Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Intervalo de año de publicación
1.
PLoS One ; 18(2): e0281344, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36745643

RESUMEN

Leptospirosis is a public health concern with lethality around 15% of the total cases. The current vaccines against Leptospira infection based on bacterins have several limitations, which require urgent development of new ones. In this context, groundbreaking approaches such as peptide-vaccines could be used to come around with promising results. Our goal was to identify conserved and immunogenic epitopes from the lipoprotein LruC that could interact with Major Histocompatibility Complex (MHC) I and II. LruC is a conserved lipoprotein expressed during leptospirosis that is considered among vaccine candidates and can be used as source for development of peptide-based vaccines. We searched for peptides that would be recognized by antibodies from either serum of hamsters previously immunized with low-LPS bacterin vaccines or from serum of patients diagnosed with leptospirosis. Immuno properties of seven peptides from LruC protein were evaluated in silico and by Dot Blot assay, and validate by ELISA. Preliminary results pointed one promising peptide that was recognized by the sera. In conclusion, the immunoinformatic approach helps the search and screening of peptides, while the Dot Blot assay, a simple and effective tool, helps to test and validate them. Thus, these prospective techniques together were validated to identify and validate potential peptides for further investigation as peptide-based vaccines or diagnostic methods.


Asunto(s)
Leptospira , Leptospirosis , Animales , Cricetinae , Humanos , Estudios Prospectivos , Leptospirosis/diagnóstico , Leptospirosis/prevención & control , Antígenos Bacterianos , Péptidos/metabolismo , Vacunas Bacterianas , Anticuerpos Antibacterianos , Lipoproteínas/metabolismo , Desarrollo de Vacunas
2.
Front Microbiol ; 13: 1051698, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36519163

RESUMEN

Pathogenic species of Leptospira are etiologic agents of leptospirosis, an emerging zoonotic disease of worldwide extent and endemic in tropical regions. The growing number of identified leptospiral species sheds light to their genetic diversity and unique virulence mechanisms, many of them still remain unknown. Toxins and adhesins are important virulence factors in several pathogens, constituting promising antigens for the development of vaccines with cross-protection and long-lasting effect against leptospirosis. For this aim, we used the shotgun phage display technique to unravel new proteins with adhesive properties. A shotgun library was constructed using fragmented genomic DNA from Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130 and pG8SAET phagemid vector. Selection of phages bearing new possible cell-binding antigens was performed against VERO cells, using BRASIL biopanning methodology. Analysis of selected clones revealed the hypothetical protein LIC10778, a potentially exposed virulence factor that belongs to the virulence-modifying (VM) protein family (PF07598), composed of 13 members in the leptospiral strain Fiocruz L1-130. Prediction of LIC10778 tertiary structure indicates that the protein contains a cellular-binding domain (N-terminal portion) and an unknown domain of no assigned activity (C-terminal portion). The predicted N-terminal domain shared structural similarities with the cell-binding and internalization domain of toxins like Ricin and Abrin, as well as to the Community-Acquired Respiratory Distress Syndrome (CARDS) toxin in Mycoplasma pneumoniae. Interestingly, recombinant portions of the N-terminal region of LIC10778 protein showed binding to laminin, collagens I and IV, vitronectin, and plasma and cell fibronectins using overlay blotting technique, especially regarding the binding site identified by phage display. These data validate our preliminary phage display biopanning and support the predicted three-dimensional models of LIC10778 protein and other members of PF07598 protein family, confirming the identification of the N-terminal cell-binding domains that are similar to ricin-like toxins. Moreover, fluorescent fused proteins also confirmed that N-terminal region of LIC10778 is capable of binding to VERO and A549 cell lines, further highlighting its virulence role during host-pathogen interaction in leptospirosis probably mediated by its C-terminal domain. Indeed, recent results in the literature confirmed this assumption by demonstrating the cytotoxicity of a closely related PF07598 member.

3.
PloS One ; 15(3): e0230460, 2020.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17568

RESUMEN

Pathogenic spirochetes from genus Leptospira are etiologic agents of leptospirosis. Cellular vaccines against Leptospira infection often elicit mainly response against the LPS antigen of the serovars present in the formulation. There is no suitable protein candidate capable of replacing whole-cell vaccines, thus requiring new approaches on vaccine development to improve leptospirosis prevention. Our goal was to develop a whole-cell vaccine sorovar-independent based on LPS removal and conservation of protein antigens exposure, to evaluate the protective capacity of monovalent or bivalent vaccines against homologous and heterologous virulent Leptospira in hamster. Leptospire were subjected to heat inactivation, or to LPS extraction with butanol and in some cases further inactivation with formaldehyde. Hamsters were immunized and challenged with homologous or heterologous virulent serovars, blood and organs were collected from the survivors for bacterial quantification, chemokine evaluation, and analysis of sera antibody reactivity and cross-reactivity by Western blot. Immunization with either heated or low LPS vaccines with serovar Copenhageni or Canicola resulted in 100% protection of the animals challenged with homologous virulent bacteria. Notably, different from the whole-cell vaccine, the low LPS vaccines produced with serovar Canicola provided only partial protection in heterologous challenge with the virulent Copenhageni serovar. Immunization with bivalent formulation results in 100% protection of immunized animals challenged with virulent serovar Canicola. All vaccines produced were able to eliminate bacteria from the kidney of challenged animals. All the vaccines raised antibodies capable to recognize antigens of serovars not present in the vaccine formulation. Transcripts of IFN?, CXCL16, CCL5, CXCL10, CXCR6, and CCR5, increased in all immunized animals. Conclusion: Our results showed that bivalent vaccines with reduced LPS may be an interesting strategy for protection against heterologous virulent serovars. Besides the desirable multivalent protection, the low LPS vaccines are specially promising due to the expected lower reatogenicity

4.
BMC Microbiol ; 19: 4, 2019.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15786

RESUMEN

Background: Leptospirosis is a widespread zoonosis caused by pathogenic prokaryotic microbes of the genus Leptospira. Although there are several reports in the literature, host-pathogen interaction is still poorly understood. The role of chemokine expression is important on the chemotaxis, activation and regulation of immune cells. Recent studies have shown that their expression profiles play an important role on the severity of leptospirosis outcome. We evaluated the phagocytosis of Leptospira by spleens cells from C3H/HeJ, C3H/HePas and BALB/c mouse strains, respectively susceptible, intermediate and resistant to leptospirosis, and by RAW 264.7 macrophages. Besides, we evaluated the effects of CCL2 treatment on the phagocytosis. The cells were incubated with or without CCL2 chemokine, and infected with virulent L. interrogans sv Copenhageni. Cells and culture supernatants were collected for subsequent analysis. Results: The number of leptospires was higher in BALB/c cells, CCL2 pre-treated or only infected groups, when compared to C3H/HeJ and C3H/HePas cells. Indeed, CCL2 activation did not interfere in the phagocytosis of Leptospira. Expression of chemokines CXCL5 and CCL8 levels were significantly inhibited in infected BALB/c cells when compared to the non-infected control. Conclusions: Higher ability to phagocytosis and early modulation of some chemokines correlated with the resistance to leptospirosis disease. Exposure to CCL2 did not interfere on phagocytosis of Leptospira in our experimental conditions, but acted in the modulation of chemokines expression during Leptospira infection.

5.
PLoS ONE ; 12(1): e0170157, 2017.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib13575

RESUMEN

A promising alternative vaccine candidate to reduce the burden of pneumococcal diseases is the protein antigen PspA (Pneumococcal surface protein A). Since concomitant colonization with two or more pneumococcal strains is very common in children, we aimed to determine if immunization with PspA would be able to control co-colonization. We evaluated nasal immunization with recombinant PspA (rPspA) in a model of co-colonization with two strains expressing different PspAs. Mice were immunized intranasally with rPspAs from clades 1 to 4 (rPspA1, rPspA2, rPspA3 or rPspA4) using whole-cell pertussis vaccine (wP) as adjuvant. Mice were then challenged with a mixture of two serotype 6B isolates St491/00 (PspA1) and St472/96 (PspA4). Immunization with rPspA1+wP and rPspA4+wP reduced colonization with both strains and the mixture of rPspA1+rPspA4+wP induced greater reduction than a single antigen. Immunization rPspA1+rPspA4+wP also reduced colonization when challenge experiments were performed with a mixture of isolates of serotypes 6B (PspA3) and 23F (PspA2). Furthermore, none of the tested formulations led to a pronounced increase in colonization of one isolate over the other, showing that the vaccine strategy would not favor replacement. Interestingly, the adjuvant wP by itself already led to some reduction in pneumococcal colonization, indicating the induction of non-specific immune responses. Anti-rPspA IgG was observed in serum, nasal wash (NW) and bronch-oalveolar lavage fluid (BALF) samples, whereas animals inoculated with formulations containing the adjuvant wP (with or without rPspA) showed higher levels of IL-6 and KC in NW and increase in tissue macrophages, B cells and CD4(+)T cells in BALF.

6.
Nucleic Acids Res ; 44(3): p. 1179-1191, 2016.
Artículo | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib13881

RESUMEN

We determined the effects of DNA damage caused by ultraviolet radiation on gene expression in Leptospira interrogans using DNA microarrays. These data were integrated with DNA binding in vivo of LexA1, a regulator of the DNA damage response, assessed by chromatin immunoprecipitation and massively parallel DNA sequencing (ChIP-seq). In response to DNA damage, Leptospira induced expression of genes involved in DNA metabolism, in mobile genetic elements and defective prophages. The DNA repair genes involved in removal of photodamage (e.g. nucleotide excision repair uvrABC, recombinases recBCD and resolvases ruvABC) were not induced. Genes involved in various metabolic pathways were down regulated, including genes involved in cell growth, RNA metabolism and the tricarboxylic acid cycle. From ChIP-seq data, we observed 24 LexA1 binding sites located throughout chromosome 1 and one binding site in chromosome 2. Expression of many, but not all, genes near those sites was increased following DNA damage. Binding sites were found as far as 550 bp upstream from the start codon, or 1 kb into the coding sequence. Our findings indicate that there is a shift in gene expression following DNA damage that represses genes involved in cell growth and virulence, and induces genes involved in mutagenesis and recombination


Asunto(s)
Genética , Bacteriología
7.
Mol. Genet. Genomics ; 291(2): p. 703-722, 2016.
Artículo | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib13797

RESUMEN

Leptospirosis is an emerging zoonosis with important economic and public health consequences and is caused by pathogenic leptospires. The genus Leptospira belongs to the order Spirochaetales and comprises saprophytic (L. biflexa), pathogenic (L. interrogans) and host-dependent (L. borgpetersenii) members. Here, we present an in silico search for DNA repair pathways in Leptospira spp. The relevance of such DNA repair pathways was assessed through the identification of mRNA levels of some genes during infection in animal model and after exposition to spleen cells. The search was performed by comparison of available Leptospira spp. genomes in public databases with known DNA repair-related genes. Leptospires exhibit some distinct and unexpected characteristics, for instance the existence of a redundant mechanism for repairing a chemically diverse spectrum of alkylated nucleobases, a new mutS-like gene and a new shorter version of uvrD. Leptospira spp. shares some characteristics from Gram-positive, as the presence of PcrA, two RecQ paralogs and two SSB proteins; the latter is considered a feature shared by naturally competent bacteria. We did not find a significant reduction in the number of DNA repair-related genes in both pathogenic and host-dependent species. Pathogenic leptospires were enriched for genes dedicated to base excision repair and non-homologous end joining. Their evolutionary history reveals a remarkable importance of lateral gene transfer events for the evolution of the genus. Up-regulation of specific DNA repair genes, including components of SOS regulon, during infection in animal model validates the critical role of DNA repair mechanisms for the complex interplay between host/pathogen


Asunto(s)
Bacteriología , Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...