Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Z Naturforsch C J Biosci ; 78(5-6): 229-233, 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-36572526

RESUMEN

The aim of the study was to evaluate the effects of the seeds, exocarp and aril extracts from Trichilia catigua A. Juss. (Meliaceae) against Spodoptera frugiperda and present the phytochemical study carried out with the aril extract of T. catigua. Limonoids were isolated from the aril of T. catigua through chromatographic techniques and their structures were proposed by spectroscopic analysis and comparison with literature data. The effects of the seeds, exocarp and aril extracts from T. catigua against S. frugiperda were evaluated considering as parameters the duration and mortality of the larval phase, in addition to the pupal weight. Phytochemical investigation of the aril extracts of T. catigua has led to the identification of the limonoids 6α-O-acetyl-7-deacetyl-14,15-dihydro-15-oxo-nimocinol (1), cedrelone (2) and 6α-O-acetyl-7-deacetylnimocinol (3). The hexane and CH2Cl2 extracts of the aril showed a high rate of larval mortality (100 and 90%, respectively). In addition, a prolongation of larval phase and a reduction in the pupal weight were observed for insects treated with hexane, CH2Cl2 and methanol extracts of seeds and with CH2Cl2 extract of exocarp of T. catigua.


Asunto(s)
Insecticidas , Limoninas , Meliaceae , Animales , Insecticidas/farmacología , Spodoptera , Limoninas/farmacología , Hexanos , Extractos Vegetales/farmacología , Meliaceae/química , Larva
2.
Chemosphere ; 308(Pt 3): 136468, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36116622

RESUMEN

Glyphosate excessive use is reported in Brazilian citrus orchards, whereas there is speculation about its consequences and the published studies are contradictory and inconclusive. This study aimed to describe the possible harmful effects by simulating glyphosate drift directly to the leaves of ∼4-yr-old citrus plants. As major results, glyphosate doses >360 g ae ha-1 increased the shikimate accumulation in leaves (up to 2.3-times above control), which was increased after a second glyphosate application (up to 3.5-times above control), even after a 240-d interval. Interestingly, shikimate accumulation was occasionally related to a dose-response of the herbicide at specific times; however, the doses had their accumulation peak on determined dates. These accumulations were directly correlated to reduced net photosynthesis even months after the glyphosate sprays. Quantum productivity based on electron transport through the photosystem II and apparent electron transport reductions up to 17% were also observed during the entire experiment course. Similarly, quantum productivity based on CO2 assimilation of glyphosate sprayed leaves decreased up to four times compared to the control after the second application. Glyphosate doses >360 g ae ha-1 increased stomatal conductance and transpiration as the carboxylation efficiency decreased, evidencing a carbon drainage in the Calvin-Benson cycle. These metabolic and physiological disturbances suggest possible photooxidative damage and an increase in photorespiration, which may be a mitigation strategy by the citrus plants to glyphosate effects, by the cost of reducing the citrus fruit yield (up to 57%). It is concluded that glyphosate phytotoxicity damages citrus plants over time due to chronic disturbances in the shikimate pathway and photosynthesis, even when there are no symptoms. This study is the first report to demonstrate how glyphosate damages citrus trees beyond the shikimate pathway.


Asunto(s)
Citrus , Herbicidas , Carbono/farmacología , Dióxido de Carbono/metabolismo , Glicina/análogos & derivados , Herbicidas/toxicidad , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo , Ácido Shikímico/metabolismo , Árboles/metabolismo , Glifosato
3.
Front Plant Sci ; 13: 987782, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36119627

RESUMEN

Soybean crop is regulated by abiotic and biotic stresses with great potential in reducing grain yield and quality. The selection of resistant cultivars is a promising approach for mitigating these damages. We evaluated the chemical profile of Glycine max leaves from different cultivars in order to explore their defense mechanisms against Spodoptera cosmioides caterpillars. We optimized solid-liquid extraction techniques using ultrasound bath and static headspace extraction. Additionally, we developed an approach based on liquid and gas chromatography for analyzing the chemical profile of G. max cultivars. The principal component analysis allowed the classification of transgenic cultivars, which are classified as susceptible to S. cosmioides, from those obtained by genetic improvement and resistant to the insect. Differences were observed in the abundance of phenolic glycosides, lipids, aldehydes, and alcohols. More specifically, S. cosmioides resistant cultivars presented molecules related to the jasmonic and salicylic acid pathways. Such data can contribute to a molecular understanding of phenotypic diversity in soybean cultivars, from plant quality to resistance mechanisms and adaptation, to environmental stress and herbivory.

4.
Nat Prod Res ; 36(5): 1342-1345, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33401965

RESUMEN

In this work, we describe the insecticidal activity against Spodoptera frugiperda of flavanone derivatives (naringin, naringenin and hesperidin) complexed to copper (II). For the assays, the compounds were incorporated into an artificial diet and offered to S. frugiperda during its larval period. The duration of larval and pupal phases, the weight of pupae and the percentage of dead insects at the end of the larval phase were evaluated. Among the tested compounds, the free flavanones 1 and 3 and the complexes 4 and 6 showed a shortening of the larval phase when compared to the control. Complex 9 showed the highest toxicity, with 96.66% larval mortality. This is the first report on the insecticidal activity of the Cu2+ complexes of the flavanones naringin, naringenin and hesperidin.[Formula: see text].


Asunto(s)
Flavanonas , Insecticidas , Animales , Cobre/farmacología , Flavanonas/farmacología , Insecticidas/farmacología , Larva , Spodoptera
5.
Front Microbiol ; 12: 704812, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34484144

RESUMEN

The fungus Beauveria bassiana is widely used for pest control; however, biostability and dispersion for broth pulverization are limiting factors for its application in the field. In this context, formulation techniques such as microencapsulation are viable alternatives. The aim of this work is to optimize B. bassiana formulations by spray dryer and evaluate its stability and biological activity against Spodoptera cosmioides compared to ionic gelatinization formulations. The fungus was biocompatible with all evaluated biopolymers (lignin, cellulose, starch, humic substances, and alginate). The encapsulation by spray drying was optimized by factorial design in an inlet and outlet air temperature of 120°C and 68°C, respectively; aspirator rate of 35 m3·h-1, feed flow rate of 12 mL·min-1; and drying gas flow at 35 L·h-1. The ionic gelation capsules were obtained using a 0.5% quantity of conidia in a 1% sodium alginate solution dropped into a 0.5 mol·L-1 CaCl2 solution using a peristaltic pump. Spray drying provided smaller microcapsules than those by ionic gelation. Both techniques produced more stable conidia when exposed to temperature and UV-radiation than non-formulated B. bassiana. The formulations prepared by spray drying showed gains at aqueous dispersion. Biological assays against Spodoptera cosmioides showed a mortality rate of up to 90%. These results demonstrate the suitability of encapsulating B. bassiana conidia stably in aqueous dispersion without loss of viability and virulence.

6.
Talanta ; 225: 122040, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33592764

RESUMEN

Although many copper-based antimicrobial compounds have been developed to control pathogenic bacteria and fungi in plants and applied for crop protection, there is evidence that several plant pathogens have developed resistance to copper-based antimicrobial compounds, including some Xanthomonas species. Xylella is a bacterial genus belonging to the Xanthomonas family; and X. fastidiosa, which is responsible for citrus variegated chlorosis (CVC) in sweet orange, may develop resistance to one or more copper-based antimicrobials. Because of the time required for the development and approval of new antimicrobials for commercial use, the discovery of novel bactericidal compounds is essential before the development of resistance to the antimicrobials currently in use becomes widespread. Here, we explored the antimicrobial potential of two newly synthesized antimicrobials complexes and one natural compound against X. fastidiosa. Several nuclear magnetic resonance (NMR) assays with high resolution and sensitivity were developed to identify new diastereoisomers in the context of octahedral ruthenium - [Ru(narin)(phen)2]PF6-and magnesium naringenin 5-alkoxide - [Mg(narin)(phen)2]OAc - complexes, obtained in the present work. The NMR assays proved to be powerful tools for the identification of isomers in metal complexes. Moreover, a protocol for the in-vivo determination of the effects of these complexes against X. fastidiosa was developed. The main trunks of X. fastidiosa infected plants were injected with the two complexes as well as with the limonoid azadirachtin using a syringe; the number of bacterial cells in the plants following treatment was estimated via real-time quantitative PCR (qPCR). Importantly, the administration of both complexes and of azadirachtin drastically reduced the number of X. fastidiosa cells in vivo.


Asunto(s)
Antiinfecciosos , Citrus , Rutenio , Xylella , Antibacterianos/farmacología , Flavanonas , Magnesio , Espectroscopía de Resonancia Magnética , Enfermedades de las Plantas
7.
Environ Sci Pollut Res Int ; 28(2): 2260-2268, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32875452

RESUMEN

Fruit processing waste, such as kernels (endocarp + seed) of avocado [Persea americana Mill. (Lauraceae)], could be used as raw material in the preparation of botanical insecticides. In light of this potential, this study assessed the insecticidal action of extracts and fractions from kernels of two avocado cultivars (Breda and Margarida) on Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) biotype B, an important pest species in tropical conditions. Ethanolic and aqueous extracts prepared from kernels of P. americana, regardless of the plant cultivar used, caused promising insecticidal activity to whitefly nymphs. Based on yield in crude extracts [10.32 and 9.85% (w/w), respectively, for cultivars Breda and Margarida], on the bioassay results with crude extracts and on the chemical profiles, the ethanolic extract of kernels of P. americana cv. Breda was chose for the continuation of the study. Thus, the ethanolic extract of kernels of cv. Breda (LC50 = 197.84 ppm and LC90 = 567.19 ppm) was selected and subjected to fractionation by the liquid-liquid partition technique. The hexane and dichloromethane fractions of this extract caused significant mortality of nymphs. The analysis using the ultraviolet (UV) and hydrogen nuclear magnetic resonance (1H NMR) showed the presence of long-chain aliphatic compounds (alkanols or acetogenins of Lauraceae), alkylfurans (or avocadofurans), and unsaturated fatty acids in these fractions, which are possibly related to bioactivity observed in B. tabaci, besides saccharides. The results show that kernels of P. americana are promising sources of compounds with insecticidal action for the control of B. tabaci biotype B, a great opportunity to transform environmental problems into eco-friendly solutions to agriculture.


Asunto(s)
Hemípteros , Insecticidas , Persea , Animales , Dosificación Letal Mediana , Ninfa
8.
Sci Rep ; 10(1): 7063, 2020 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-32341436

RESUMEN

Tahiti lemon juice (Citrus latifolia) (TLJ), as a natural source of flavonoids, has been used as an alternative to anti-inflammatory drugs for the treatment of dysmenorrhea and menstrual excessive bleeding, often associated with an imbalance of the prostaglandins (PG) levels. However, despite the positive effects, the mechanisms that rule menstruation control are still unknown. Therefore, the objectives were to characterize the TLJ and analyze its effect on the production of PGF2α, PGE2 and pro-inflammatory cytokines involved inmenstruation. Flavonoids from TLJ were discriminated by UPLC-DAD-MS/MS (Qq-TOF) and the effects of TLJ were studied in vitro by quantification of the contraction of myoblasts in culture and PGF2α and PGE2 productions. Further, the systemic and menstrual fluid levels of PGF2α, PGE2, IL-1ß, TNF-α, IL-6, AK1B1 and AK1C3 enzymes produced by women during the menstrual period were compared after exposition or not to TLJ or meloxicam. The results showed that TLJ induces an increase in the contraction of myoblasts and the PGF2α supernatant level. Regarding in vivo analysis, a higher concentration of PGF2α and an unaltered PGE2 level was also found in the menstrual blood of women treated with TLJ, in contrast with a lower level of PGE2 and PGF2α observed in the meloxicam group. Concerning cytokines, only menstrual TNF-α levels decrease after treatment with TLJ or meloxicam. In conclusion, TLJ may favor the control of menstruation events via a PGF2α mediated muscle contractile response.


Asunto(s)
Citrus/química , Citocinas/metabolismo , Menstruación/efectos de los fármacos , Menstruación/metabolismo , Extractos Vegetales/farmacología , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Cromatografía Líquida de Alta Presión , Dinoprost/metabolismo , Dinoprostona/metabolismo , Femenino , Humanos , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Espectrometría de Masas , Ratones , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Extractos Vegetales/química , Factor de Necrosis Tumoral alfa/metabolismo
9.
Molecules ; 23(11)2018 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-30413007

RESUMEN

A high performance liquid chromatography (HPLC) method was developed for the simultaneous isolation, on a semi-preparative scale, of chavibetol and methyleugenol from the crude essential oil of P. pseudocaryophyllus leaves. The purity of the isolated compounds and their quantifications were developed using GC/FID. Chavibetol was isolated with high purity (98.7%) and mass recovery (94.6%). The mass recovery (86.4%) and purity (85.3%) of methyleugenol were lower than those of chavibetol. Both compounds were identified on the basis of spectral analysis. The results suggest that the method can provide chavibetol with high purity, mass recovery, and productivity from crude essential, which will be used in bioassays against stored insect pests.


Asunto(s)
Eugenol/análogos & derivados , Pimenta/química , Cromatografía Líquida de Alta Presión , Eugenol/aislamiento & purificación , Aceites Volátiles/química , Hojas de la Planta/química , Aceites de Plantas/química
10.
Molecules ; 23(10)2018 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-30347671

RESUMEN

Eight alkaloids (1⁻8) were isolated from Ruta graveolens, and their herbicide activities were evaluated through in vitro, semivivo, and in vivo assays. The most relevant results were observed for Compounds 5 and 6⁻8 at 150 µM, which decreased dry biomass by 20% and 23%, respectively. These are significant results since they presented similar values with the positive control, commercial herbicide 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Based on the performed assays, Compound 5 (graveoline) is classified as an electron-transport inhibitor during the light phase of photosynthesis, as well as a plant-growth regulator. On the other hand, Compounds 6⁻8 inhibited electron and energy transfers, and are also plant-growth inhibitors. These phytotoxic behaviors based on acridone and quinolone alkaloids may serve as a valuable tool in the further development of a new class of herbicides since natural products represent an interesting alternative to replace commercial herbicides, potentially due their low toxicity.


Asunto(s)
Alcaloides/aislamiento & purificación , Metoxaleno/análogos & derivados , Fotosíntesis/efectos de los fármacos , Ruta/química , Alcaloides/química , Alcaloides/farmacología , Biomasa , Diurona/farmacología , Transporte de Electrón , Herbicidas/farmacología , Metoxaleno/química , Metoxaleno/aislamiento & purificación , Metoxaleno/farmacología
11.
J Agric Food Chem ; 66(29): 7627-7632, 2018 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-29944364

RESUMEN

Sclerotinia sclerotiorum is responsible for the white mold of soybeans, and the difficulty to control the disease in Brazil is causing million-dollar damages. Stachybotrys levispora has shown activity against S. sclerotiorum. In our present investigation, we analyzed the chemical basis of this inhibition. Eight compounds were isolated, and using spectroscopic methods, we identified their structures as the known substances 7-dechlorogriseofulvin, 7-dechlorodehydrogriseofulvin, griseofulvin, dehydrogriseofulvin, 3,13-dihydroxy-5,9,11-trimethoxy-1-methylbenzophenone, griseophenone A, 13-hydroxy-3,5,9,11-tetramethoxy-1-methylbenzophenone, and 12-chloro-13-hydroxy-3,5,9,11-tetramethoxy-1-methylbenzophenone. Griseofulvin inhibited the mycelial growth of S. sclerotiorum at 2 µg mL-1. Thus, the antagonistic effect of S. levispora to S. sclerotiorum may well be due to the presence of griseofulvins. Our results stimulate new work on the biosynthesis of griseofulvins, to locate genes that encode key enzymes in these routes and use them to increase the production of these compounds and thus potentiate the fungicide effect of this fungus. S. levispora represents an agent for biocontrol, and griseofulvin represents a fungicide to S. sclerotiorum.


Asunto(s)
Ascomicetos/efectos de los fármacos , Fungicidas Industriales/farmacología , Griseofulvina/farmacología , Enfermedades de las Plantas/prevención & control , Stachybotrys/química , Ascomicetos/fisiología , Brasil , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungicidas Industriales/química , Fungicidas Industriales/metabolismo , Griseofulvina/química , Griseofulvina/metabolismo , Enfermedades de las Plantas/microbiología , Glycine max/microbiología , Stachybotrys/genética , Stachybotrys/metabolismo
13.
J Pharm Biomed Anal ; 151: 252-259, 2018 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-29367161

RESUMEN

The treatment of diseases using enzymes as targets has called for the development of new and reliable methods for screening. The protease cathepsin D is one such target involved in several diseases such as tumors, degenerative processes, and vital processes of parasites causing schistosomiasis. Herein, we describe the preparation of a fused silica capillary, cathepsin D (CatD)-immobilized enzyme reactor (IMER) using in a multidimensional High Performance Liquid Chromatography-based method (2D-HPLC) and zonal affinity chromatography as an alternative in the search for new ligands. The activity and kinetic parameters of CatD-IMER were evaluated by monitoring the product MOCAc-Gly-Lys-Pro-Ile-Leu-Phe (P-MOCAc) (KM = 81.9 ±â€¯7.49 µmol/L) generated by cleavage of the fluorogenic substrate MOCAc-Gly-Lys-Pro-Ile-Leu-Phe-Phe-Arg-Leu-Lys(DNP)-d-Arg-NH2 (S-MOCAc). Stability studies have indicated that CatD-IMER retained 20% of activity after 5 months, a relevant result, because proteases are susceptible to autoproteolysis in solution assays with free enzyme. In the search for inhibitors, 12 crude natural product extracts were analyzed using CatD-IMER as the target, resulting in the isolation of different classes of natural products. In addition, 26 compounds obtained from different species of plants were also screened, demonstrating the efficiency and reproducibility of the herein reported assay even in the case of complex matrices such as plant crude extracts.


Asunto(s)
Catepsina D/antagonistas & inhibidores , Inhibidores Enzimáticos/análisis , Enzimas Inmovilizadas/antagonistas & inhibidores , Extractos Vegetales/análisis , Catepsina D/química , Catepsina D/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Evaluación Preclínica de Medicamentos/instrumentación , Evaluación Preclínica de Medicamentos/métodos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Estabilidad de Enzimas , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Ligandos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Reproducibilidad de los Resultados , Dióxido de Silicio/química , Especificidad por Sustrato
14.
Pestic Biochem Physiol ; 134: 55-62, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27914540

RESUMEN

Antidesmone, isolated from Waltheria brachypetala Turcz., owns special structural features as two α,ß-unsaturated carbonyl groups and a side alkyl chain that can compete with the quinones involved in the pool of plastoquinones at photosystem II (PSII). In this work, we showed that the alkaloid is an inhibitor of Hill reaction and its target was located at the acceptor side of PSII. Studies of chlorophyll (Chl) a fluorescence showed a J-band that indicates direct action of antidesmone in accumulation of QA- (reduced plastoquinone A) due to the electron transport blocked at the QB (plastoquinone B) level similar to DCMU. In vivo assays indicated that antidesmone is a selective post-emergent herbicide probe at 300µM by reducing the biomass production of Physalis ixacarpa plants. Furthermore, antidesmone also behaves as pre-emergent herbicide due to inhibit Physalis ixacarpa plant growth about 60%. Antidesmone, a natural product containing a 4(1H)-pyridones scaffold, will serve as a valuable tool in further development of a new class of herbicides.


Asunto(s)
Alcaloides/toxicidad , Compuestos Aza/toxicidad , Herbicidas/toxicidad , Lolium/efectos de los fármacos , Physalis/efectos de los fármacos , Alcaloides/aislamiento & purificación , Compuestos Aza/aislamiento & purificación , Clorofila/metabolismo , Clorofila A , Cloroplastos/efectos de los fármacos , Cloroplastos/metabolismo , Herbicidas/aislamiento & purificación , Lolium/crecimiento & desarrollo , Lolium/metabolismo , Malvaceae/química , Fotosíntesis/efectos de los fármacos , Complejo de Proteína del Fotosistema II/metabolismo , Physalis/crecimiento & desarrollo , Physalis/metabolismo , Hojas de la Planta/química , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Tallos de la Planta/química , Tallos de la Planta/efectos de los fármacos , Tallos de la Planta/crecimiento & desarrollo
15.
J Inorg Biochem ; 164: 141-149, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27665317

RESUMEN

Metal chelates strongly influence the nature and magnitude of pharmacological activities in flavonoids. In recent years, studies have shown that a promising class of flavanone-metal ion complexes can act as selective cholinesterase inhibitors (ChEIs), which has led our group to synthesize a new series of flavanone derivatives (hesperidin, hesperetin, naringin, and naringenin) complexed to either copper (II) or zinc (II) and to evaluate their potential use as selective ChEIs. Most of the synthesized complexes exhibited greater inhibitory activity against acetylcholinesterase (AChE) than against butyrylcholinesterase (BChE). Nine of these complexes constituted potent, reversible, and selective ChEIs with inhibitory potency (IC50) and inhibitory constant (Ki) ranging from 0.02 to 4.5µM. Copper complexes with flavanone-bipyridine derivatives afforded the best inhibitory activity against AChE and BChE. The complex Cu(naringin)(2,2'-bipyridine) (11) gave IC50 and Ki values of 0.012±0.002 and 0.07±0.01µM for huAChE, respectively, which were lower than the inhibitory values obtained for standard galanthamine (IC50=206±30.0 and Ki=126±18.0µM). Evaluation of the inhibitory activity of this complex against butyrylcholinesterase from human serum (huBChE) gave IC50 and Ki values of 8.0±1.4 and 2.0±0.1µM, respectively. A Liquid Chromatography-Immobilized Capillary Enzyme Reactor by UV detection (LC-ICER-UV) assay allowed us to determine the IC50 and Ki values and the type of mechanism for the best inhibitors.


Asunto(s)
Acetilcolinesterasa/química , Butirilcolinesterasa/química , Inhibidores de la Colinesterasa , Complejos de Coordinación , Cobre/química , Flavonas/química , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Proteínas Ligadas a GPI/antagonistas & inhibidores , Proteínas Ligadas a GPI/química , Humanos
16.
Phytochemistry ; 115: 161-70, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25749617

RESUMEN

A high performance liquid chromatography-ultraviolet (HPLC-UV) method was developed for quantifying hesperidin and rutin levels in leaves and stems of Citrus limonia, with a good linearity over a range of 1.0-80.0 and 1.0-50.0 µg mL(-1) respectively, with r(2)>0.999 for all curves. The limits of detection (LOD) for both flavonoids were 0.6 and 0.5 µg mL(-1), respectively, with quantification (LOQ) being 2.0 and 1.0 µg mL(-1), respectively. The quantification method was applied to Citrus sinensis grafted onto C. limonia with and without CVC (citrus variegated chlorosis) symptoms after Xylella fastidiosa infection. The total content of rutin was low and practically constant in all analyses in comparison with hesperidin, which showed a significant increase in its amount in symptomatic leaves. Scanning electron microscopy studies on leaves with CVC symptoms showed vessel occlusion by biofilm, and a crystallized material was noted. Considering the difficulty in isolating these crystals for analysis, tissue sections were analyzed by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) to confirm the presence of hesperidin at the site of infection. The images constructed from MS/MS data with a specific diagnostic fragment ion (m/z 483) also showed higher ion intensities for it in infected plants than in healthy ones, mainly in the vessel regions. These data suggest that hesperidin plays a role in the plant-pathogen interaction, probably as a phytoanticipin. This method was also applied to C. sinensis and C. limonia seedlings, and comparison with the graft results showed that the rootstock had an increased hesperidin content ∼3.6 fold greater in the graft stem than in the stem of C. sinensis seedlings. Increase in hesperidin content by rootstock can be related to induced internal defense mechanisms.


Asunto(s)
Citrus/química , Hesperidina/análisis , Xylella/patogenicidad , Cromatografía Líquida de Alta Presión , Citrus/genética , Resonancia Magnética Nuclear Biomolecular , Hojas de la Planta/química , Tallos de la Planta/química , Rutina/análisis , Xylella/efectos de los fármacos
17.
Bioorg Med Chem ; 23(3): 466-70, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25564380

RESUMEN

NS2B-NS3 is a serine protease of the Dengue virus considered a key target in the search for new antiviral drugs. In this study flavonoids were found to be inhibitors of NS2B-NS3 proteases of the Dengue virus serotypes 2 and 3 with IC50 values ranging from 15 to 44 µM. Agathisflavone (1) and myricetin (4) turned out to be noncompetitive inhibitors of dengue virus serotype 2 NS2B-NS3 protease with Ki values of 11 and 4.7 µM, respectively. Docking studies propose a binding mode of the flavonoids in a specific allosteric binding site of the enzyme. Analysis of biomolecular interactions of quercetin (5) with NT647-NHS-labeled Dengue virus serotype 3 NS2B-NS3 protease by microscale thermophoresis experiments, yielded a dissociation constant KD of 20 µM. Our results help to understand the mechanism of inhibition of the Dengue virus serine protease by flavonoids, which is essential for the development of improved inhibitors.


Asunto(s)
Virus del Dengue/enzimología , Flavonoides/farmacología , Serina Endopeptidasas/química , Inhibidores de Serina Proteinasa/química , Inhibidores de Serina Proteinasa/farmacología , Antivirales/química , Antivirales/farmacología , Virus del Dengue/efectos de los fármacos , Flavonoides/química , Cinética , Modelos Moleculares , Simulación del Acoplamiento Molecular , Serina Endopeptidasas/metabolismo , Relación Estructura-Actividad
18.
J Nat Prod ; 77(2): 392-6, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24521209

RESUMEN

Byrsonima coccolobifolia leaf and stem extracts were studied in the search for possible leishmanicidal compounds using arginase (ARG) from Leishmania amazonensis as a molecular target. Flavonoids 1b, 1e-1g, 2a, 2b, and 2d-2f showed significant inhibitory activity, with IC50 values ranging from 0.9 to 4.8 µM. The kinetics of the most active compounds were determined. Flavonoids 1e, 1f, 2a, 2b, and 2e were characterized as noncompetitive inhibitors of ARG with dissociation constants (Ki) ranging from 0.24 to 3.8 µM, demonstrating strong affinity. Structure-activity relationship studies revealed some similarities in the structural features of flavonoids related to ARG activity.


Asunto(s)
Arginasa/antagonistas & inhibidores , Flavonoides/aislamiento & purificación , Flavonoides/farmacología , Leishmania/efectos de los fármacos , Malpighiaceae/química , Brasil , Flavonoides/química , Concentración 50 Inhibidora , Estructura Molecular , Hojas de la Planta/química , Tallos de la Planta/química , Relación Estructura-Actividad
19.
Bioresour Technol ; 148: 624-7, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24080442

RESUMEN

Dioxins are a class of extremely hazardous molecules that might pose a threat to the environment. This work evaluated the microbial degradation of 1,2,3,4-tetrachlorodibenzo-p-dioxin (1,2,3,4-TCDD), in liquid broth using three brown-rot fungi and one white-rot fungi as control. A fast and reliable extraction method with recoveries of over 98% together with a validated GC-MS method was developed, and applied to quantify 1,2,3,4-TCDD in liquid broth, mycelia and reaction flask, with detection limits of 10 ppb. Among the four strains tested, brown-rot fungus Aspergillus aculeatus showed best results, removing up to 21% of dioxin after 30-day incubation. The results open both a path for biotechnological interest in bioremediation purposes and environmental behavior studies by using brown-rot fungus.


Asunto(s)
Basidiomycota/metabolismo , Medios de Cultivo/metabolismo , Dibenzodioxinas Policloradas/análogos & derivados , Análisis de Varianza , Biodegradación Ambiental , Biomasa , Cromatografía de Gases y Espectrometría de Masas , Modelos Lineales , Dibenzodioxinas Policloradas/química , Dibenzodioxinas Policloradas/metabolismo , Reproducibilidad de los Resultados
20.
J Agric Food Chem ; 61(38): 9131-9, 2013 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-23991702

RESUMEN

Biodegradable nanoparticles have been widely explored as carriers for controlled delivery of therapeutic molecules; however, studies describing the development of nanoparticles as carriers for biopesticide products are few. In this work, a new method to prepare nanoparticles loaded with neem (Azadirachta indica) extracts is presented. In this study, nanoparticles were formulated as colloidal suspension and (spray-dried) powder and characterized by evaluating pH, particle size, zeta potential, morphology, absolute recovery, and entrapment efficiency. A high-performance liquid chromatography method was used for nanoparticle characterization. The best formulations presented absolute recovery and entrapment efficiencies of approximately 100% and a release profile based on swelling and relaxation of the polymer or polymer erosion. The biological data of the formulated products against Plutella xylostella showed 100% larval mortality. The nanoparticle information improved the stability of neem products against ultraviolet radiation and increased their dispersion in the aqueous phase.


Asunto(s)
Azadirachta/química , Química Farmacéutica/métodos , Portadores de Fármacos/química , Insecticidas/química , Mariposas Nocturnas/efectos de los fármacos , Nanopartículas/química , Extractos Vegetales/química , Animales , Estabilidad de Medicamentos , Control de Insectos , Insecticidas/farmacología , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Mariposas Nocturnas/crecimiento & desarrollo , Extractos Vegetales/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...