Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Peptides ; 171: 171094, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37696437

RESUMEN

OBJECTIVE: Pressure overload can result in significant changes to the structure of blood vessels, a process known as vascular remodeling. High levels of tension can cause vascular inflammation, fibrosis, and structural alterations to the vascular wall. Prior research from our team has demonstrated that the oral administration of alamandine can promote vasculoprotective effects in mice aorta that have undergone transverse aortic constriction (TAC). Furthermore, changes in local hemodynamics can affect the right and left carotid arteries differently after TAC. Thus, in this study, we aimed to assess the effects of alamandine treatment on right carotid remodeling and the expression of oxidative stress-related substances induced by TAC. METHODS AND RESULTS: Male C57BL/6 mice were categorized into three groups: Sham, TAC, and TAC treated with alamandine (TAC+ALA). Alamandine treatment was administered orally by gavage (30 µg/kg/day), starting three days before the surgery, and continuing for a period of fourteen days. Morphometric analysis of hematoxylin and eosin-stained sections revealed that TAC induced hypertrophic and positive remodeling in the right carotid artery. Picrosirius Red staining also demonstrated an increase in total collagen deposition in the right carotid artery due to TAC-induced vascular changes. Alamandine treatment effectively prevented the increase in reactive oxygen species production and depletion of nitric oxide levels, which were induced by TAC. Finally, alamandine treatment was also shown to prevent the increased expression of nuclear factor erythroid 2-related factor 2 and 3-nitrotyrosine that were induced by TAC. CONCLUSION: Our results suggest that alamandine can effectively attenuate pathophysiological stress in the right carotid artery of animals subjected to TAC.


Asunto(s)
Arterias Carótidas , Estrés Oxidativo , Masculino , Ratones , Animales , Constricción , Ratones Endogámicos C57BL , Arterias Carótidas/cirugía , Remodelación Ventricular , Modelos Animales de Enfermedad
2.
Int Immunopharmacol ; 115: 109583, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36610330

RESUMEN

Nephrotic syndrome (NS) is associated with kidney dysfunction and is an important cause of morbidity and mortality in industrialized countries. Here, we evaluated the effects of the phosphodiesterase-4 (PDE-4) inhibitors rolipram and roflumilast on a doxorubicin-induced NS model. Early-stage rolipram treatment preserved glomerular filtration barrier function, as indicated by reduced serum protein and albumin loss and the prevention of hypercholesterolemia. These effects were associated with reduced glomerular and tubular lesions and abrogated renal cell apoptosis. In addition, rolipram treatment reduced inflammation, which was characterized by a decrease in macrophage accumulation and reduced levels of CCL2 and TNF in the kidneys. Rolipram also reduced renal fibrosis, which was associated with decreased α-smooth muscle actin (α-SMA) area and increased metalloproteinase 9 (MMP9) activity in renal tissue. Late-stage rolipram or roflumilast treatment preserved glomerular filtration barrier function, as characterized by reduced serum albumin loss, decreased proteinuria, and the prevention of hypercholesterolemia. Importantly, only roflumilast treatment was associated with a reduction in glomerular and tubular lesions at this time point. In addition, both rolipram and roflumilast reduced renal tissue fibrosis and MMP9 activity in renal tissue.


Asunto(s)
Hipercolesterolemia , Enfermedades Renales , Inhibidores de Fosfodiesterasa 4 , Ratones , Animales , Inhibidores de Fosfodiesterasa 4/uso terapéutico , Inhibidores de Fosfodiesterasa 4/farmacología , Rolipram/farmacología , Rolipram/uso terapéutico , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Metaloproteinasa 9 de la Matriz , Riñón/metabolismo , Enfermedades Renales/inducido químicamente , Enfermedades Renales/tratamiento farmacológico , Modelos Animales de Enfermedad , Fibrosis
3.
Cells ; 11(3)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35159221

RESUMEN

Background: Atherosclerosis is a chronic inflammatory disease where macrophages participate in the progression of the disease. However, the role of resident-like macrophages (res-like) in the atherosclerotic aorta is not completely understood. Methods: A single-cell RNA sequencing analysis of CD45+ leukocytes in the atherosclerotic aorta of apolipoprotein E-deficient (Apoe-/-) mice on a normal cholesterol diet (NCD) or a high cholesterol diet (HCD), respecting the side-to-specific predisposition to atherosclerosis, was performed. A population of res-like macrophages expressing hyaluronan receptor LYVE-1 was investigated via flow cytometry, co-culture experiments, and immunofluorescence in human atherosclerotic plaques from carotid artery disease patients (CAD). Results: We identified 12 principal leukocyte clusters with distinct atherosclerosis disease-relevant gene expression signatures. LYVE-1+ res-like macrophages, expressing a high level of CC motif chemokine ligand 24 (CCL24, eotaxin-2), expanded under hypercholesteremia in Apoe-/- mice and promoted VSMC phenotypic modulation to osteoblast/chondrocyte-like cells, ex vivo, in a CCL24-dependent manner. Moreover, the abundance of LYVE-1+CCL24+ macrophages and elevated systemic levels of CCL24 were associated with vascular calcification and CAD events. Conclusions: LYVE-1 res-like macrophages, via the secretion of CCL24, promote the transdifferentiation of VSMC to osteogenic-like cells with a possible role in vascular calcification and likely a detrimental role in atherosclerotic plaque destabilization.


Asunto(s)
Aterosclerosis , Enfermedades de las Arterias Carótidas , Receptores de Hialuranos , Hipercolesterolemia , Placa Aterosclerótica , Calcificación Vascular , Animales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Enfermedades de las Arterias Carótidas/metabolismo , Quimiocina CCL24 , Colesterol/metabolismo , Humanos , Receptores de Hialuranos/metabolismo , Hipercolesterolemia/metabolismo , Macrófagos/metabolismo , Proteínas de Transporte de Membrana , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Músculo Liso Vascular/metabolismo , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , RNA-Seq , Calcificación Vascular/metabolismo , Proteínas de Transporte Vesicular/metabolismo
4.
Int J Mol Sci ; 23(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35008765

RESUMEN

(1) Background: Monocytes and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome orchestrate lipid-driven amplification of vascular inflammation promoting the disruption of the fibrous cap. The components of the NLRP3 inflammasome are expressed in macrophages and foam cells within human carotid atherosclerotic plaques and VSMCs in hypertension. Whether monocytes and NLRP3 inflammasome activation are direct triggers of VSMC phenotypic switch and plaque disruption need to be investigated. (2) Methods: The direct effect of oxLDL-activated monocytes in VSMCs co-cultured system was demonstrated via flow cytometry, qPCR, ELISA, caspase 1, and pyroptosis assay. Aortic roots of VSMCs lineage tracing mice fed normal or high cholesterol diet and human atherosclerotic plaques were used for immunofluorescence quantification of NLRP3 inflammasome activation/VSMCs phenotypic switch. (3) Results: OxLDL-activated monocytes reduced α-SMA, SM22α, Oct-4, and upregulation of KLF-4 and macrophage markers MAC2, F4/80 and CD68 expression as well as caspase 1 activation, IL-1ß secretion, and pyroptosis in VSMCs. Increased caspase 1 and IL-1ß in phenotypically modified VSMCs was detected in the aortic roots of VSMCs lineage tracing mice fed high cholesterol diet and in human atherosclerotic plaques from carotid artery disease patients who experienced a stroke. (4) Conclusions: Taken together, these results provide evidence that monocyte promote VSMC phenotypic switch through VSMC NLRP3 inflammasome activation with a likely detrimental role in atherosclerotic plaque stability in human atherosclerosis.


Asunto(s)
Aterosclerosis/metabolismo , Aterosclerosis/patología , Inflamasomas/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Aterosclerosis/complicaciones , Aterosclerosis/genética , Enfermedades de las Arterias Carótidas/metabolismo , Enfermedades de las Arterias Carótidas/patología , Transdiferenciación Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hipercolesterolemia/complicaciones , Hipercolesterolemia/patología , Interleucina-1beta/metabolismo , Lipoproteínas LDL/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo
5.
Am J Physiol Heart Circ Physiol ; 320(1): H352-H363, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33124885

RESUMEN

Alamandine is the newest identified peptide of the renin-angiotensin system (RAS) and has protective effects in the cardiovascular system. Although the involvement of classical RAS components in the genesis and progression of cardiac remodeling is well known, less is known about the effects of alamandine. Therefore, in the present study we investigated the effects of alamandine on cardiac remodeling induced by transverse aortic constriction (TAC) in mice. Male mice (C57BL/6), 10-12 wk of age, were divided into three groups: sham operated, TAC, and TAC + ALA (30 µg/kg/day alamandine for 14 days). The TAC surgery was performed under ketamine and xylazine anesthesia. At the end of treatment, the animals were submitted to echocardiographic examination and subsequently euthanized for tissue collection. TAC induced myocyte hypertrophy, collagen deposition, and the expression of matrix metalloproteinase (MMP)-2 and transforming growth factor (TGF)-ß in the left ventricle. These markers of cardiac remodeling were reduced by oral treatment with alamandine. Western blotting analysis showed that alamandine prevents the increase in ERK1/2 phosphorylation and reverts the decrease in 5'-adenosine monophosphate-activated protein kinase (AMPK)α phosphorylation induced by TAC. Although both TAC and TAC + ALA increased SERCA2 expression, the phosphorylation of phospholamban in the Thr17 residue was increased solely in the alamandine-treated group. The echocardiographic data showed that there are no functional or morphological alterations after 2 wk of TAC. Alamandine treatment prevents myocyte hypertrophy and cardiac fibrosis induced by TAC. Our results reinforce the cardioprotective role of alamandine and highlight its therapeutic potential for treating heart diseases related to pressure overload conditions.NEW & NOTEWORTHY Alamandine is the newest identified component of the renin-angiotensin system protective arm. Considering the beneficial effects already described so far, alamandine is a promising target for cardiovascular disease treatment. We demonstrated for the first time that alamandine improves many aspects of cardiac remodeling induced by pressure overload, including cell hypertrophy, fibrosis, and oxidative stress markers.


Asunto(s)
Fármacos Cardiovasculares/farmacología , Ventrículos Cardíacos/efectos de los fármacos , Hipertrofia Ventricular Izquierda/prevención & control , Oligopéptidos/farmacología , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Aorta/fisiopatología , Aorta/cirugía , Proteínas de Unión al Calcio/metabolismo , Colágeno/metabolismo , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/fisiopatología , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/fisiopatología , Ligadura , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Fosforilación , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
6.
Front Physiol ; 11: 621769, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33424644

RESUMEN

Atherosclerosis constitutes a major risk factor for cardiovascular diseases, the leading cause of morbidity and mortality worldwide. This slowly progressing, chronic inflammatory disorder of large- and medium-sized arteries involves complex recruitment of immune cells, lipid accumulation, and vascular structural remodeling. The α7 nicotinic acetylcholine receptor (α7nAChR) is expressed in several cell types involved in the genesis and progression of atherosclerosis, including macrophages, dendritic cells, T and B cells, vascular endothelial and smooth muscle cells (VSMCs). Recently, the α7nAChR has been described as an essential regulator of inflammation as this receptor mediates the inhibition of cytokine synthesis through the cholinergic anti-inflammatory pathway, a mechanism involved in the attenuation of atherosclerotic disease. Aside from the neuronal cholinergic control of inflammation, the non-neuronal cholinergic system similarly regulates the immune function. Acetylcholine released from T cells acts in an autocrine/paracrine fashion at the α7nAChR of various immune cells to modulate immune function. This mechanism additionally has potential implications in reducing atherosclerotic plaque formation. In contrast, the activation of α7nAChR is linked to the induction of angiogenesis and VSMC proliferation, which may contribute to the progression of atherosclerosis. Therefore, both atheroprotective and pro-atherogenic roles are attributed to the stimulation of α7nAChRs, and their role in the genesis and progression of atheromatous plaque is still under debate. This minireview highlights the current knowledge on the involvement of the α7nAChR in the pathophysiology of atherosclerosis.

7.
Mediators Inflamm ; 2019: 2401081, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30918468

RESUMEN

The renin-angiotensin system (RAS) peptides play an important role in inflammation. Resolution of inflammation contributes to restore tissue homeostasis, and it is characterized by neutrophil apoptosis and their subsequent removal by macrophages, which are remarkable plastic cells involved in the pathophysiology of diverse inflammatory diseases. However, the effects of RAS peptides on different macrophage phenotypes are still emerging. Here, we evaluated the effects of angiotensin-(1-7) (Ang-(1-7)) and the most novel RAS peptide, alamandine, on resting (M0), proinflammatory M(LPS+IFN-γ), and anti-inflammatory M(IL-4) macrophage phenotypes in vitro, as well as on specific immune cell populations and macrophage subsets into the pleural cavity of LPS-induced pleurisy in mice. Our results showed that Ang-(1-7) and alamandine, through Mas and MrgD receptors, respectively, do not affect M0 macrophages but reduce the proinflammatory TNF-α, CCL2, and IL-1ß transcript expression levels in LPS+IFN-γ-stimulated macrophages. Therapeutic administration of these peptides in LPS-induced inflammation in mice decreased the number of neutrophils and M1 (F4/80lowGr1+CD11bmed) macrophage frequency without affecting the other investigated macrophage subsets. Our data suggested that both Ang-(1-7) and alamandine, through their respective receptors Mas and MrgD, promote an anti-inflammatory reprogramming of M(LPS+IFN-γ)/M1 macrophages under inflammatory circumstances and potentiate the reprogramming induced by IL-4. In conclusion, our work sheds light on the emerging proresolving properties of Ang-(1-7) and alamandine, opening new avenues for the treatment of inflammatory diseases.


Asunto(s)
Angiotensina I/farmacología , Antiinflamatorios/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Oligopéptidos/farmacología , Fragmentos de Péptidos/farmacología , Animales , Células Cultivadas , Interleucina-4/farmacología , Masculino , Ratones , Ratones Endogámicos BALB C , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
8.
Clin Sci (Lond) ; 133(5): 629-643, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30737255

RESUMEN

Aims: The renin-angiotensin system (RAS) plays an important role in the pathophysiology of vascular diseases, especially as a mediator of inflammation and tissue remodelling. Alamandine (Ala1-angiotensin-(1-7)) is a new biologically active peptide from the RAS, interacting with Mas-related G-protein-coupled receptor member D. Although a growing number of studies reveal the cardioprotective effects of alamandine, there is a paucity of data on its participation in vascular remodelling associated events. In the present study, we investigated the effects of alamandine on ascending aorta remodelling after transverse aortic constriction (TAC) in mice. Methods and results: C57BL/6J male mice were divided into the following groups: Sham (sham-operated), TAC (operated) and TAC+ALA (operated and treated with alamandine-HPßCD (2-Hydroxypropyl-ß-cyclodextrin), 30 µg/kg/day, by gavage). Oral administration of alamandine for 14 days attenuated arterial remodelling by decreasing ascending aorta media layer thickness and the cells density in the adventitia induced by TAC. Alamandine administration attenuated ascending aorta fibrosis induced by TAC, through a reduction in the following parameters; total collagen deposition, expression collagen III and transforming growth factor-ß (TGF-ß) transcripts, matrix metalloproteinases (MMPs) activity and vascular expression of MMP-2. Importantly, alamandine decreased vascular expression of proinflammatory genes as CCL2, tumour necrosis factor α (TNF-α) and interleukin-1ß (IL-1ß), and was able to increase expression of MRC1 and FIZZ1, pro-resolution markers, after TAC surgery. Conclusion: Alamandine treatment attenuates vascular remodelling after TAC, at least in part, through anti-fibrotic and anti-inflammatory effects. Hence, this work opens new avenues for the use of this heptapeptide also as a therapeutic target for vascular disease.


Asunto(s)
Antiinflamatorios/farmacología , Aorta Torácica/efectos de los fármacos , Enfermedades de la Aorta/prevención & control , Oligopéptidos/farmacología , Remodelación Vascular/efectos de los fármacos , Animales , Aorta Torácica/metabolismo , Aorta Torácica/patología , Aorta Torácica/fisiopatología , Enfermedades de la Aorta/metabolismo , Enfermedades de la Aorta/patología , Enfermedades de la Aorta/fisiopatología , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Fibrosis , Mediadores de Inflamación/metabolismo , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Receptor de Angiotensina Tipo 1/genética , Receptor de Angiotensina Tipo 1/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Sistema Renina-Angiotensina/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
9.
Curr Hypertens Rep ; 20(2): 17, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29541937

RESUMEN

PURPOSE OF REVIEW: The purpose of this review was to summarize the current knowledge on the role of angiotensin-(1-7) [Ang-(1-7)] and alamandine in experimental hypertension and atherosclerosis. RECENT FINDINGS: The renin-angiotensin system (RAS) is a very complex system, composed of a cascade of enzymes, peptides, and receptors, known to be involved in the pathogenesis of hypertension and atherosclerosis. Ang-(1-7), identified and characterized in 1987, and alamandine, discovered 16 years after, are the newest two main effector molecules from the RAS, protecting the vascular system against hypertension and atherosclerosis. While the beneficial effects of Ang-(1-7) have been widely studied in several experimental models of hypertension, much less studies were performed in experimental models of atherosclerosis. Alamandine has shown similar vascular effects to Ang-(1-7), namely, endothelial-dependent vasorelaxation mediated by nitric oxide and hypotensive effects in experimental hypertension. There are few studies on the effects of alamandine on atherosclerosis.


Asunto(s)
Angiotensina I/metabolismo , Aterosclerosis , Hipertensión , Oligopéptidos/metabolismo , Fragmentos de Péptidos/metabolismo , Animales , Aterosclerosis/metabolismo , Aterosclerosis/fisiopatología , Humanos , Hipertensión/metabolismo , Hipertensión/fisiopatología , Modelos Teóricos , Sistema Renina-Angiotensina/fisiología , Vasodilatación/fisiología
10.
J Biomed Mater Res A ; 106(8): 2243-2250, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29577602

RESUMEN

Subcutaneous implantation of synthetic materials and biomedical devices often induces abnormal tissue healing - the foreign body reaction-which impairs their function. In particular, Interferon-γ (IFN-γ) is a critical endogenous mediator of inflammation and plays a key role in a wide variety of biological responses including tissue healing. However, the contribution of endogenous IFN-γ on different features of the foreign body response induced by synthetic implants regarding neovascularization, inflammation, and fibrogenesis is not well known. Here, we evaluated inflammatory angiogenesis and fibrogenesis induced by implantation of polyether-polyurethane sponges in mice targeted disrupted of the interferon-γ gene (IFN-γ-/- ) and wild-type (WT). The hemoglobin content, the number of vessels, and blood flow (evaluated by LDPI-laser Doppler perfusion imaging) were decreased in the implants from IFN-γ-/- as compared to WT mice. Likewise, neutrophils and macrophages accumulation (MPO and NAG activities, respectively) was decreased in IFN-γ-/- implants. Interestingly, while the local content of VEGF, TNF-α, CXCL-1/KC, as measured by ELISA, and iNOS expression, as measured by qPCR, were significantly reduced, the content of IL-10 was greatly increased in the implants from IFN-γ-/- mice as compared to WT mice. No alterations were observed in CCL-2/MCP-1 levels. Lastly, the collagen deposition, assessed by Picro-Sirius red-stained histological sections, was also reduced in IFN-γ-/- implants. Altogether, these data suggest that IFN-γ activity contributes to inflammatory angiogenesis and fibrogenesis in synthetic implants and that lack of IFN-γ expression attenuates foreign body reaction to implants in mice. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2243-2250, 2018.


Asunto(s)
Reacción a Cuerpo Extraño/patología , Interferón gamma/deficiencia , Prótesis e Implantes , Tejido Subcutáneo/patología , Animales , Colágeno/metabolismo , Fibrosis , Regulación de la Expresión Génica , Leucocitos/metabolismo , Masculino , Ratones Endogámicos C57BL , Neovascularización Fisiológica , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
11.
Clin Sci (Lond) ; 131(10): 1015-1026, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28360194

RESUMEN

Recently, H2O2 has been identified as the endothelium-dependent hyperpolarizing factor (EDHF), which mediates flow-induced dilation in human coronary arteries. Neuronal nitric oxide synthase (nNOS) is expressed in the cardiovascular system and, besides NO, generates H2O2 The role of nNOS-derived H2O2 in human vessels is so far unknown. The present study was aimed at investigating the relevance of nNOS/H2O2 signaling in the human internal mammary artery (IMA) and saphenous vein (SV), the major conduits used in coronary artery bypass grafting. In the IMA, but not in the SV, ACh (acetylcholine)-induced vasodilatation was decreased by selective nNOS inhibition with TRIM or Inhibitor 1, and by catalase, which specifically decomposes H2O2 Superoxide dismutase (SOD), which generates H2O2 from superoxide, decreased the vasodilator effect of ACh on SV. In the IMA, SOD diminished phenylephrine-induced contraction in endothelium-containing, but not in endothelium-denuded vessels. Importantly, while exogenous H2O2 produced vasodilatation in IMA, it constricted SV. ACh increased H2O2 production in both sets of vessels. In the IMA, the increase in H2O2 was inhibited by catalase and nNOS blockade. In SV, H2O2 production was abolished by catalase and reduced by nNOS inhibition. Immunofluorescence experiments showed the presence of nNOS in the vascular endothelium and smooth muscle cells of both the IMA and SV. Together, our results clearly show that H2O2 induced endothelium-dependent vascular relaxation in the IMA, whereas, in the SV, H2O2 was a vasoconstrictor. Thus, H2O2 produced in the coronary circulation may contribute to the susceptibility to accelerated atherosclerosis and progressive failure of the SV used as autogenous graft in coronary bypass surgery.


Asunto(s)
Vasos Coronarios/metabolismo , Peróxido de Hidrógeno/metabolismo , Arterias Mamarias/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Vena Safena/metabolismo , Anciano , Puente de Arteria Coronaria , Vasos Coronarios/cirugía , Femenino , Humanos , Masculino , Arterias Mamarias/cirugía , Persona de Mediana Edad , Músculo Liso Vascular/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo I/genética , Vena Safena/cirugía
12.
Clin Dev Immunol ; 2013: 263846, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24302957

RESUMEN

Hypercholesterolemia is one of the most important risk factors for erectile dysfunction, mostly due to the impairment of oxidative stress and endothelial function in the penis. The cannabinoid system might regulate peripheral mechanisms of sexual function; however, its role is still poorly understood. We investigated the effects of CB2 activation on oxidative stress and fibrosis within the corpus cavernosum of hypercholesterolemic mice. Apolipoprotein-E-knockout mice were fed with a western-type diet for 11 weeks and treated with JWH-133 (selective CB2 agonist) or vehicle during the last 3 weeks. CB2 receptor expression, total collagen content, and reactive oxygen species (ROS) production within the penis were assessed. In vitro corpus cavernosum strips preparation was performed to evaluate the nitric oxide (NO) bioavailability. CB2 protein expression was shown in cavernosal endothelial and smooth muscle cells of wild type and hypercholesterolemic mice. Treatment with JWH-133 reduced ROS production and NADPH-oxidase expression in hypercholesterolemic mice penis. Furthermore, JWH-133 increased endothelial NO synthase expression in the corpus cavernosum and augmented NO bioavailability. The decrease in oxidative stress levels was accompanied with a reduction in corpus cavernosum collagen content. In summary, CB2 activation decreased histological features, which were associated with erectile dysfunction in hypercholesterolemic mice.


Asunto(s)
Cannabinoides/farmacología , Disfunción Eréctil/complicaciones , Disfunción Eréctil/tratamiento farmacológico , Hipercolesterolemia/complicaciones , Receptor Cannabinoide CB2/agonistas , Animales , Cannabinoides/administración & dosificación , Modelos Animales de Enfermedad , Disfunción Eréctil/metabolismo , Fibrosis , Hipercolesterolemia/metabolismo , Lípidos/sangre , Masculino , Ratones , Ratones Noqueados , NADPH Oxidasas/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Pene/efectos de los fármacos , Pene/metabolismo , Pene/patología , Especies Reactivas de Oxígeno/metabolismo , Receptor Cannabinoide CB2/metabolismo
13.
Atherosclerosis ; 194(2): 383-90, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17324434

RESUMEN

OBJECTIVE: Plaque-prone areas are exposed to a particular hemodynamic environment characterized by a low mean shear stress value and a cyclic reversal flow. This mechanical environment, also termed oscillatory shear stress (OSS), induces the expression of several pro-atherogenic genes in the endothelial cells including the preproendothelin-1 (ppET-1) gene. The present paper investigates the molecular mechanisms of this induction. METHODS AND RESULTS: Several deletional mutants of ppET-1 gene promoter were cloned upstream of a luciferase gene and transiently transfected in bovine arterial endothelial cells that were further exposed to plaque-prone hemodynamics. After 24h of flow exposure, analysis of the transfected cells showed that a proximal promoter of 156 base pairs length retained OSS responsiveness. Mutation of an activator protein-1 (AP-1) binding site present in this minimal promoter completely abolished its activation by OSS. Consistently, electrophoresis mobility shift assay revealed a sustained activation of AP-1 transcription factor in endothelial cells exposed to OSS. In addition to the transcriptional activation, we demonstrated that OSS also induces a stabilization of ppET-1mRNA through the 3'-untranslated region (3'-UTR) of this gene. Fluvastatin, a drug known to improve endothelial function, was shown to prevent OSS up-regulation of the ppET-1 gene expression. Under this flow condition, fluvastatin affects ppET-1 gene expression via inhibition of its promoter activity without affecting ppET-1mRNA stability. CONCLUSIONS: The present study demonstrate that plaque-prone hemodynamic induces ppET-1 gene expression by both transcriptional and post-transcriptional mechanisms via an activation of AP-1 transcriptional factor and stabilization of mRNA. The transcriptional up-regulation of ppET-1 was shown to be fluvastatin sensitive.


Asunto(s)
Velocidad del Flujo Sanguíneo/fisiología , Células Endoteliales/metabolismo , Endotelina-1/metabolismo , Activación Transcripcional/fisiología , Animales , Bovinos , Células Cultivadas , Endotelina-1/genética , Ácidos Grasos Monoinsaturados/farmacología , Fluvastatina , Hemodinámica , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Indoles/farmacología , Regiones Promotoras Genéticas , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...