Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 11(45): 42420-42428, 2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31635456

RESUMEN

A new biopolymer obtained from onion pulp (Allium cepa L.) was employed to produce a sustainable substrate for flexible organic light-emitting diodes (FOLEDs). Indium tin oxide (ITO) and SiO2 thin films were deposited by rf-magnetron sputtering onto these biosubstrates to obtain flexible, transparent, and conductive anodes, on top of which FOLEDs were produced. This new biomaterial exhibits an optical transparency of 63% at 550 nm. ITO films were optimized by varying rf power during deposition onto the biopolymers, and their electrical properties are comparable to the those of ITO grown on top of rigid substrates: a carrier concentration of -3.63 × 1021 cm-3 and carrier mobility of 7.72 cm2 V-1 s-1 for the optimized film. Consequently, the sheet resistance and resistivity of this ITO film were 8.92 Ω sq-1 and 2.23 × 10-4 Ω cm, respectively, hence allowing the production of FOLEDs. The A. cepa L. based FOLED was fabricated using CuPc, ß-NPB, and Alq3 as organic layers, and it exhibited a maximum luminance of about 2062 cd m-2 at 16.6 V. The current efficiency reached a maximum value of 2.1 cd A-1 at 85.3 mA cm-2. The obtained results suggest the possibility to use these substrates for innovative biocompatible applications in optoelectronics, such as photodynamic therapy.

2.
Sensors (Basel) ; 18(11)2018 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-30413000

RESUMEN

The recent development of silver nanostars (Ag-NSs) is promising for improved surface-enhanced sensing and spectroscopy, which may be further exploited if the mechanisms behind the excitation of localized surface plasmon resonances (LSPRs) are identified. Here, we show that LSPRs in Ag-NSs can be obtained with finite-difference time-domain (FDTD) calculations by considering the nanostars as combination of crossed nanorods (Ag-NRs). In particular, we demonstrate that an apparent tail at large wavelengths ( λ ≳ 700 nm) observed in the extinction spectra of Ag-NSs is due to a strong dipolar plasmon resonance, with no need to invoke heterogeneity (different number of arms) effects as is normally done in the literature. Our description also indicates a way to tune the strongest LSPR at desired wavelengths, which is useful for sensing applications.

3.
ACS Appl Mater Interfaces ; 9(33): 27905-27917, 2017 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-28715169

RESUMEN

In this work we explored the fabrication of flexible and transparent hybrids of silk fibroin (SF) and epoxy-modified siloxane for photonic applications. It is well-known that regenerated SF solutions can form free-standing films with high transparency. Although SF has a restricted number of chemically reactive side groups, the main issues of as-cast pristine SF films regard the high solubility into aqueous media, brittleness, and low thermal stability. The design of SF films with enhanced functionality but high transparency triggers new opportunities on a broader range of applications in biophotonics. Here we present a simple, functional, yet remarkably versatile hybrid material derived from silica sol-gel process based on SF protein and (3-glycidyloxypropyl)trimethoxysilane (GPTMS), an organically modified silicon-alkoxide owning a reactive terminal epoxy group. Specifically, we investigated the effect of the addition of GPTMS into SF solutions on the processability, morphology, crystallinity, and mechanical and optical properties of the resulting hybrid films. Highly transparent (ca. 90%) and flexible free-standing hybrid films were achieved. Cell viability assays revealed that the hybrid films are noncytotoxic to rat osteoblast cells even at high GPTMS content (up to 70 wt %). The hybrid films showed enhanced thermal stability and were rich in organic (epoxy) and inorganic (silanol) functional groups according to the content of GPTMS. We also evaluated the successful preparation of high-quality optical red emissive SF hybrid films by loading YVO4:Eu3+ nanoparticles at low concentration (<5 wt %). A meaningful description of the hybrid film structure is reported from the combination of scanning electron and atomic force microscopies, vibrational spectroscopy, solid-state NMR, and X-ray diffraction analyses.


Asunto(s)
Silanos/química , Animales , Resinas Epoxi , Fibroínas , Ratas , Seda , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA