Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 26(16)2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34443416

RESUMEN

Acylhydrazones are still an important framework to the design of new bioactive compounds. As treatment of chronic pain represents a clinical challenge, we decided to modify the structure of LASSBio-1514 (1), previously described as anti-inflammatory and analgesic prototype. Applying the homologation as a strategy for molecular modification, we designed a series of cyclopentyl- (2a-e), cyclobutyl- (3a-e), and cyclopropylacylhydrazones (4a-e) that were synthetized and evaluated in murine models of inflammation and pain. A comparison of their in silico physicochemical and drug-like profile was conducted, as well as their anti-inflammatory and analgesic effect. Compounds 4a (LASSBio-1755) and 4e (LASSBio-1757) displayed excellent in silico drug-like profiles and were identified as new analgesic lead-candidates in acute and chronic model of pain, through oral administration.


Asunto(s)
Simulación por Computador , Diseño de Fármacos , Hidrazonas/síntesis química , Hidrazonas/farmacología , Preparaciones Farmacéuticas/síntesis química , Analgésicos/farmacología , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Aspirina/farmacología , Células CACO-2 , Humanos , Hidrazonas/química , Hiperalgesia/patología , Indometacina/farmacología , Masculino , Ratones , Conformación Molecular , Peso Molecular , Preparaciones Farmacéuticas/química , Ratas Wistar
2.
Front Pharmacol ; 11: 590544, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33390966

RESUMEN

Leishmaniasis are group of neglected diseases with worldwide distribution that affect about 12 million people. The current treatment is limited and may cause severe adverse effects, and thus, the search for new drugs more effective and less toxic is relevant. We have previously investigated the immunomodulatory effects of LASSBio-1386, an N-acylhydrazone derivative. Here we investigated the in vitro and in vivo activity of LASSBio-1386 against L. amazonensis. LASSBio-1386 inhibited the proliferation of promastigotes of L. amazonensis (EC50 = 2.4 ± 0.48 µM), while presenting low cytotoxicity to macrophages (CC50 = 74.1 ± 2.9 µM). In vitro incubation with LASSBio-1386 reduced the percentage of Leishmania-infected macrophages and the number of intracellular parasites (EC50 = 9.42 ± 0.64 µM). Also, in vivo treatment of BALB/c mice infected with L. amazonensis resulted in a decrease of lesion size, parasitic load and caused histopathological alterations, when compared to vehicle-treated control. Moreover, LASSBio-1386 caused ultrastructural changes, arrested cell cycle in G0/G1 phase and did not alter the membrane mitochondrial potential of L. amazonensis. Aiming to its possible molecular interactions, we performed docking and molecular dynamics studies on Leishmania phosphodiesterase B1 (PDB code: 2R8Q) and LASSBio-1386. The computational analyses suggest that LASSBio-1386 acts against Leishmania through the modulation of leishmanial PDE activity. In conclusion, our results indicate that LASSBio-1386 is a promising candidate for the development of new leishmaniasis treatment.

3.
Int Immunopharmacol ; 65: 108-118, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30312879

RESUMEN

Immunosuppressive drugs are widely used for the treatment of immune-mediated diseases and inflammation, but the toxicity and side effects of the available immunosuppressors make the search of new agents of great relevance. Here, we evaluated the immunomodulatory activity of an N-acylhydrazone derivative, (E)-N'-(3,4-dimethoxybenzylidene)-4-methoxybenzohydrazide (LASSBio-1386), a phosphodiesterase-4 (PDE-4) inhibitor. LASSBio-1386 inhibited lymphocyte activation in a concentration-dependent fashion, decreasing lymphoproliferation and IFN-γ and IL-2 production stimulated by anti-CD3/CD28 mAbs or concanavalin A (Con A) and inducing cell-cycle arrest in the G0/G1 phase. These effects were not blocked by RU486, a glucocorticoid receptor (GR) antagonist, indicating an effect independent of glucocorticoid receptor activation. Combination index-isobologram analysis indicates a synergistic effect between LASSBio-1386 and dexamethasone in lymphoproliferation inhibition. LASSBio-1386 presented immunomodulatory action in macrophage cultures, as observed by a significant and concentration-dependent decrease in NO and TNF-α production, an effect achieved by reducing IĸB expression and NF-κB activation. In the mouse model of endotoxic shock, LASSBio-1386 at 50 and 100 mg/kg protected 50 and 85% of mice against LPS-induced lethality, respectively. In agreement to its in vitro action, treatment with 100 mg/kg of LASSBio-1386 reduced TNF-α and IL-1ß serum levels, while increased IL-6 and IL-10. Finally, LASSBio-1386 reduced the paw edema in a BSA-induced delayed-type hypersensitivity model. These findings demonstrate the immunomodulatory and immunosuppressant effects of LASSBio-1386 and indicate this molecule is a promising pharmacologic agent for immune-mediated diseases.


Asunto(s)
Hidrazonas/farmacología , Hipersensibilidad Tardía/tratamiento farmacológico , Inmunosupresores/farmacología , Lipopolisacáridos/toxicidad , Inhibidores de Fosfodiesterasa 4/farmacología , Choque/tratamiento farmacológico , Animales , Benzamidas , Citocinas/genética , Citocinas/metabolismo , Dexametasona/farmacología , Antagonistas de Hormonas/farmacología , Hidrazonas/química , Macrófagos , Masculino , Ratones , Ratones Endogámicos BALB C , Mifepristona/farmacología , Estructura Molecular , FN-kappa B/genética , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Células RAW 264.7
4.
Drug Des Devel Ther ; 10: 2869-2879, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27672310

RESUMEN

Neuropathy is a serious complication of diabetes that has a significant socioeconomic impact, since it frequently demands high levels of health care consumption and compromises labor productivity. Recently, LASSBio-1471 (3) was demonstrated to improve oral glucose tolerance, reduce blood glucose levels, and display an anti-neuropathy effect in a murine streptozotocin-induced diabetes model. In the present work, we describe the design, synthesis, solubility, plasma stability, and pharmacological evaluation of novel sulfonylhydrazone derivatives (referred to herein as compounds 4-9), which were designed by molecular modification based on the structure of the prototype LASSBio-1471 (3). Among the compounds tested, better plasma stability was observed with 4, 5, and 9 in comparison to compounds 6, 7, and 8. LASSBio-1773 (7), promoted not only hypoglycemic activity but also the reduction of thermal hyperalgesia and mechanical allodynia in a murine model of streptozotocin-induced diabetic neuropathic pain.

5.
PLoS One ; 10(9): e0136761, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26327315

RESUMEN

Pyridoxinamine 5'-phosphate oxidases (P(N/M)P oxidases) that bind flavin mononucleotide (FMN) and oxidize pyridoxine 5'-phosphate or pyridoxamine 5'-phosphate to form pyridoxal 5'-phosphate (PLP) are an important class of enzymes that play a central role in cell metabolism. Failure to generate an adequate supply of PLP is very detrimental to most organisms and is often clinically manifested as a neurological disorder in mammals. In this study, we analyzed the function of YLR456W and YPR172W, two homologous genes of unknown function from S. cerevisiae that have been annotated as putative P(N/M)P oxidases based on sequence homology. Different experimental approaches indicated that neither protein catalyzes PLP formation nor binds FMN. On the other hand, our analysis confirmed the enzymatic activity of Pdx3, the S. cerevisiae protein previously implicated in PLP biosynthesis by genetic and structural characterization. After a careful sequence analysis comparing the putative and confirmed P(N/M)P oxidases, we found that the protein domain (PF01243) that led to the YLR456W and YPR172W annotation is a poor indicator of P(N/M)P oxidase activity. We suggest that a combination of two Pfam domains (PF01243 and PF10590) present in Pdx3 and other confirmed P(N/M)P oxidases would be a stronger predictor of this molecular function. This work exemplifies the importance of experimental validation to rectify genome annotation and proposes a revision in the annotation of at least 400 sequences from a wide variety of fungal species that are homologous to YLR456W and are currently misrepresented as putative P(N/M)P oxidases.


Asunto(s)
Hongos/enzimología , Piridoxaminafosfato Oxidasa/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/enzimología , Dicroismo Circular , Clonación Molecular , Ontología de Genes , Anotación de Secuencia Molecular , Piridoxaminafosfato Oxidasa/genética , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia
6.
Molecules ; 20(2): 3067-88, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25685912

RESUMEN

The N-acylhydrazone (NAH) moiety is considered a privileged structure, being present in many compounds with diverse pharmacological activities. Among the activities attributed to NAH derivatives anti-inflammatory and analgesic ones are recurrent. As part of a research program aiming at the design of new analgesic and anti-inflammatory lead-candidates, a series of cyclohexyl-N-acylhydrazones 10-26 were structurally designed from molecular modification on the prototype LASSBio-294, representing a new class of cycloalkyl analogues. Compounds 10-26 and their conformationally restricted analogue 9 were synthetized and evaluated as analgesic and anti-inflammatory agents in classical pharmacologic protocols. The cyclohexyl-N-acylhydrazones 10-26 and the cyclohexenyl analogue 9 showed great anti-inflammatory and/or analgesic activities, but compound 13 stood out as a new prototype to treat acute and chronic painful states due to its important analgesic activity in a neuropathic pain model.


Asunto(s)
Analgésicos , Antiinflamatorios no Esteroideos , Hidrazinas , Neuralgia/tratamiento farmacológico , Analgésicos/síntesis química , Analgésicos/química , Analgésicos/farmacología , Animales , Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Modelos Animales de Enfermedad , Hidrazinas/síntesis química , Hidrazinas/química , Hidrazinas/farmacología , Ratones , Neuralgia/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...