RESUMEN
The present study aims to evaluate the toxicity of the green calcium oxide nanoparticles (CaO-NPs) from golden linseed extract (Linum usitatissimum L.) by phytotoxicity in seeds (Daucus carota, Beet shankar, Lactuca sativa and Brassica oleracea), in vitro safety profile and soil toxicity for CaO-NPs solutions from 12.5 to 100 µg mL-1. Ecotoxicity analysis of the soil was conducted using XRD diffractograms, which revealed characteristic peaks of the nanoparticles at 37.35° (12.5, 25, 50, and 100 µg mL-1), as well as a peak at 67.34° (25 and 100 µg mL-1). Additionally, the in vitro safety assessment indicated favorable cell specification and regulation within the first 24 h, demonstrating reductions of 15.9 ± 0.2%, 17.9 ± 0.2%, 17.6 ± 0.2%, and 32.9 ± 0.2% to 12.5, 25, 50, and 100 µg mL-1, respectively. The dsDNA assay revealed initial protection and controlled release within the cells for 48 h. However, after 72 h, there was an increase of 20 ± 0.2%, 16 ± 0.2%, 32 ± 0.2%, and 43 ± 0.2% to 12.5, 25, and 50 µg mL-1. The analysis of ROS generation demonstrated a reduction of 40 ± 0.2%, 33 ± 0.2%, 20 ± 0.2%, and 9 ± 0.2% to 12.5, 25, 50, and 100 µg mL-1, respectively, within 72 h. When compared to the negative control (NC), there was an increase of 50 ± 0.2%, 56 ± 0.2%, 77 ± 0.2%, and 92 ± 0.2% at the same concentrations, suggesting that the nanoparticles generated free radicals, leading to cellular inflammation. This was attributed to the positive surface charge of the nanoparticles, resulting in reduced interaction with the cell membrane and the subsequent release of hydroxyl (â¢OH), which caused inflammatory processes in the cells. Therefore, CaO-NPs exhibited a low phytotoxicity and high cytocompatibility, while also promoting plant germination and growth.
Asunto(s)
Compuestos de Calcio , Nanopartículas , Óxidos , Compuestos de Calcio/toxicidad , Compuestos de Calcio/química , Óxidos/toxicidad , Óxidos/química , Nanopartículas/toxicidad , Nanopartículas/química , Humanos , Contaminantes del Suelo/toxicidad , Brassica/efectos de los fármacos , Brassica/crecimiento & desarrollo , Semillas/efectos de los fármacos , Suelo/químicaRESUMEN
Nowadays, bone systems have a series of consequences that compromise the quality of life mainly due to wear and decreased bioactivity, generally in elderly people and children. In this context, the combination of montmorillonite (MMT-NPs) in a vitreous system such as nanobioglass facilitates the adsorption of biomolecules on the surface and within the interlamellar spaces, enabling the entry of ions by a cation exchange process focusing on increasing the rate of bone formation. This work aims to synthesize and characterize an eco-friendly hybrid reinforcement containing MMT-NPs with nanobioglass doped with magnesium nanoparticles (MgNPs-BV). In this way, MMT-NPs@MgNPs-BV was synthesized by the impregnation method, where an experimental design was used to verify the synthesis conditions. The ideal condition by experimental design was carried out in terms of the characterization and biological activity, where we demonstrated MMT-NPs of 30% w w-1, MgNPs-BV of 6% w w-1, and a calcination temperature of 1273.15 K with a cell viability around 66.87%, an average crystallite diameter of 12.5 nm, and a contact angle of 17.7°. The characterizations confirmed the impregnation method with an average particle size of 51.4 ± 13.1 nm. The mechanical tests showed a hardness of 2.6 GPa with an apparent porosity of 22.2%, similar to human bone. MMT-NPs@MgNPs-BV showed a cell proliferation of around 96% in osteoblastic cells (OFCOL II), with the formation of the apatite phase containing a relation of Ca/P of around 1.63, a biodegradability of 82%, and rapid release of ions with a Ca/P ratio of 1.42. Therefore, the eco-friendly hybrid reinforcement with MMT-NPs and MgNPs-BV shows potential for application with a matrix for biocompatible nanocomposites for bone regeneration.
Asunto(s)
Bentonita , Nanopartículas , Niño , Humanos , Anciano , Calidad de Vida , Regeneración Ósea , IonesRESUMEN
Due to inadequate treatment and incorrect management, wastewater with dyes has a great toxic potential as an environmental liability, representing a major concern. In this context, this work aims to investigate the potential application of nanostructured powdery systems (nanocapsules and liposomes) in the photodegradation of Rhodamine B (RhB) dye, under UV and visible irradiation. Curcumin nanocapsules and liposomes containing ascorbic acid and ascorbyl palmitate were prepared, characterized, and dried using the spray drying technique. The drying processes of the nanocapsule and the liposome showed yields of 88% and 62%, respectively, and, after aqueous resuspension of the dry powders, it was possible to recover the nanocapsule size (140 nm) and liposome size (160 nm). The dry powders were characterized by Fourier transform infrared spectroscopy (FTIR), N2 physisorption at 77 K, X-ray diffraction (XRD), and diffuse reflectance spectroscopy (DRS-UV). Under UV irradiation, 64.8% and 58.48% of RhB were removed with nanocapsules and liposomes, respectively. While under visible radiation, nanocapsules and liposomes were able to degrade 59.54% and 48.79% of RhB, respectively. Under the same conditions, commercial TiO2 showed degradation of 50.02% (UV) and 42.14% (visible). After 5 cycles of reuse, there was a decrease of about 5% for dry powders under UV irradiation and 7.5% under visible irradiation. Therefore, the nanostructured systems developed have potential application in heterogeneous photocatalysis for the degradation of organic pollutants, such as RhB, as they demonstrated superior photocatalytic performance to commercial catalysts (nanoencapsulated curcumin > ascorbic acid and ascorbyl palmitate liposomal > TiO2).
Asunto(s)
Curcumina , Nanocápsulas , Polvos , Colorantes , Liposomas , Ácido AscórbicoRESUMEN
This work aims to synthesize, characterize and evaluate the biological activity of nanochitosan (NQ) prepared from shrimp, showing an innovative character and correlating with sustainable development, in promoting an alternative to the solid waste (shrimp) shell and a biological application of the novel nanomaterial. The NQ synthesis was carried out by the alkaline deacetylation process of chitin obtained of the demineralization, deproteinization and deodorization steps from shrimp shells. NQ was characterized by X-ray Powder Diffraction (XRD), Fourier Transform infrared spectroscopy (FTIR), Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS), N2 porosimetry (BET/BJH methods), zeta potential (ZP) and zero charge point (pHZCP). To evaluate the safety profile was carried out the cytotoxicity, DCFHA and NO tests in 293T and HaCat cell lines. Regarding the cell viability, NQ did not show toxicity for the tested cell lines. In the evaluation of the ROS production and NO tests, there was no increase in the levels of free radicals and between the negative control, respectively. Therefore, NQ does not present cytotoxicity in the cell lines tested (10, 30, 100 and 300 µg mL-1), proposing new perspectives on the use of NQ as a potential nanomaterial for biomedical applications.
Asunto(s)
Quitosano , Decápodos , Nanoestructuras , Quitosano/química , Quitosano/toxicidad , Nanoestructuras/química , Nanoestructuras/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Decápodos/química , Humanos , Células HEK293 , Queratinocitos/metabolismo , Supervivencia Celular/efectos de los fármacos , Nitritos/metabolismo , Nitratos/metabolismoRESUMEN
The work aims to synthesize and characterize vegetal charcoal (or biochar) from Syzygium cumini (AC-SC), evaluating the adsorption capacity for dexamethasone drug (DEX) removal, using the kinetic and equilibrium adsorption. The samples were characterized by N2 porosimetry, X-ray diffraction, scanning electron microscopy with energy-dispersive spectroscopy, zeta potential, and zero charge point. Adsorption equilibrium was carried out applying the Langmuir, Freundlich, Redlich-Peterson, Sips, and Toth models, and kinetic adsorption applied the pseudo-first order, pseudo-second order, Elovich, Avrami, and Weber-Morris models. AC-SC showed a heterogeneous and porous surface, negatively charged, crystalline structure, specific surface area of the 2.14 m2 g-1 and pHZCP = 7.36. About the effect of the AC-SC concentration, 5.0 g L-1 showed the best DEX removal (53.02%), about the others' concentration (2.0 and 7.5 g L-1). About the equilibrium and kinetic adsorption, the Sips model and pseudo-second order showed the best experimental data adjusted, indicating that the adsorption monolayer was dependent on the ions onto the biosorbent, with a maximum adsorption capacity of 0.744 mg g-1 after 180 min. Therefore, AC-SC can be used as an alternative material in the removal of organic pollutants, such as drug removal.
RESUMEN
The present work aims to evaluate the removal capacity of Rhodamine B dye (RhB) using nano-porous chitosan (NC) from shrimp shells. NC was characterized by XRD, SEM-EDS, N2 porosimetry, zeta potential (ZP), FTIR, DLS, and zero charge point (pHZCP). Compound central rotational design (CCRD) was used to determine the ideal condition and antimicrobial activity was evaluated against different strains. NC showed characteristic of semi-crystalline material with negative charge surface (around - 21.13 mV), and SBET = 1.12 m2 g-1, Vp = 0.0064 cm3 g-1, Dp = 32.09 nm and pHZCP ≈ 7.98. Kinetic adsorption showed the pseudo first-order model had the best fit, with adsorption capacity (q1) between 3.78 and 64.43 mg g-1 and pseudo first-order kinetic constant (k1) between 0.066 and 0.052 min-1. Sips model best described the equilibrium data, with a maximum adsorption capacity of 505.131 mg g-1. Antimicrobial activity was observed at 0.25 mg mL-1 for different strains. Therefore, NC has potential application in the removal of the dye, combining sustainable development associated with nanotechnology.
Asunto(s)
Antiinfecciosos , Quitosano , Contaminantes Químicos del Agua , Adsorción , Concentración de Iones de Hidrógeno , Cinética , RodaminasRESUMEN
The pollution of wastewater with dyes has become a serious environmental problem around the world. In this context, the work aims to synthesize and characterize a supported nanocatalyst (NZ-180) from rice husk (RH) and alum sludge (AS) incorporating silver (AgNPs@NZ-180) and titanium nanoparticles (TiNPs@NZ-180) for Rhodamine B (RhB) dye degradation, under UV and visible irradiation. Central rotatable composite design (CRCD) was used to determine ideal conditions, using nanocatalyst and dye concentration such as input variables and degradation percentage like response variable. Samples were characterized by XRD, SEM-EDS, N2 porosimetry, DLS, and zeta potential analyses. TiNPs@NZ-180 showed the best photocatalytic activity (62.62 and 50.82% under UV and visible irradiation, respectively). Specific surface area has increased from 35.90 to 418.90 m2 g-1 for NZ-180 and TiNPs@NZ-180, respectively. Photocatalytic performance of TiNPs@NZ-180 has reduced to 8 and 10% after 5 cycles under UV and visible light irradiation. Ideal conditions found by CRCD were 2.75 g L-1 and 20 mg L-1 for nanocatalyst and RhB concentrations, respectively. Therefore, (agro)industrial waste present such an alternative material for application in the removal of wastewater with dyes, which helps in the reduction of the impact of chemicals/pollutants on human and animal health.
Asunto(s)
Residuos Industriales , Plata , Animales , Catálisis , Colorantes , Humanos , Luz , Titanio , Aguas ResidualesRESUMEN
The industrial effluent contaminated with organic pollutants has been causing an increase in the toxicity of the ecosystem, causing a great environmental impact. Thus, the present work aims the green synthesis of silver nanoparticles (AgNPs) from Aloe vera, its characterization and antimicrobial activity against Pseudomonas aeruginosa (ATCC 27853) and Staphylococcus aureus (ATCC 25923). AgNPs were characterized by X-ray diffraction (XRD), Scanning Electronic Microscopy with Energy Dispersive Spectroscopy (SEM-EDS), Zeta Potential (ZP) and N2 porosimetry (BET/BJH method). Antimicrobial activity were carried out by Minimal Inhibitory Concentration (MIC) method. The XRD demonstrated characteristic peaks of AgNPs at 38.29°; 44.55° and 64.81°, and SEM-EDS micrographs showed that AgNPs produced by biomolecules of Aloe vera extract resulted in a weight concentration around 92.59% silver, 7.15% oxygen and 0.26% chlorine. Regarding zeta potential, all samples showed negative electric charge (around -35.3 mV), while N2 porosimetry resulted in a surface specific area of 6.09 m2 g-1, with a volume and diameter pore of 0.032 cm³ g-1 and 33.47, respectively. Antimicrobial activity was observed at 15.62 µg mL-1 and 31.25 µg mL-1 for P. aeruginosa and S. aureus, respectively. Thus, AgNPs can be considered a promising nanoparticle for degradation of organic pollutants in aqueous solution as well as an adjuvant for treatment of microbial infections.
Asunto(s)
Aloe/química , Antiinfecciosos , Nanopartículas del Metal , Plata/farmacología , Antiinfecciosos/farmacología , Biomasa , Ecosistema , Tecnología Química Verde , Extractos Vegetales , Staphylococcus aureusRESUMEN
Acrylamide (AA) is routinely used in laboratories and industries, and its disposal is always a problem; consequently, offering an alternative for their treatment contributes to conducting research in a responsible way. Therefore, in this work, acrylamide solutions were degraded by ultraviolet radiation and hydrogen peroxide (H2O2), and their toxicity was evaluated using a Desmodesmus quadricauda microalgae growth assay. The AA solutions were exposed to different dosages of H2O2 and different exposure times to UV radiation. The degradation was evaluated by liquid chromatography, which allowed the identification of the acrylamide peak and subsequent by-product peaks. A 100% degradation of the 1.5 mg L-1 AA solution with UV/H2O2 (0.034 g L-1) was achieved in just 10 min. The by-products formed did not inhibit the growth of D. quadricauda microalgae. The number of D. quadricauda individuals that grew in acrylamide solutions exposed to 20 and 30 min of UV radiation, with 0.034 g L-1 of H2O2, was very similar to the number of individuals that grew in the control solution. Thus, the treatment proposed in this work using H2O2 combined with ultraviolet radiation degraded acrylamide into by-products with reduced toxicity.
Asunto(s)
Microalgas , Contaminantes Químicos del Agua , Acrilamida/toxicidad , Humanos , Peróxido de Hidrógeno , Oxidación-Reducción , Fotólisis , Rayos UltravioletaRESUMEN
Nowadays, there is a growing concern about the environmental impacts of colored wastewater. Thus, the present work aims the synthesis, characterization and determination of photocatalytic activity of iron oxide (Fe2O3) nanocatalyst, evaluating the effect of hybridization with titanium (TiNPs-Fe2O3) and silver (AgNPs-Fe2O3) nanoparticles, on the degradation of Rhodamine B dye (RhB). Nanocatalysts were characterized by XRD, SEM, TEM, FTIR, N2 porosimetry (BET/BJH method), zeta potential and DRS. Photocatalytic tests were performed in a slurry reactor, with the nanocatalyst in suspension, using RhB as a target molecule, under ultraviolet (UV) and visible radiation. Therefore, the photocatalytic activity of the nanocatalysts (non-doped and hybridized) was evaluated in these ideal conditions, where the AgNPs-Fe2O3 sample showed the best photocatalytic activity with a degradation of 94.1% (k = 0.0222 min-1, under UV) and 58.36% (k = 0.007 min-1, under visible), while under the same conditions, the TiO2-P25 commercial catalyst showed a degradation of 61.5% (k = 0.0078 min-1) and 44.5% (k = 0.0044 min-1), respectively. According with the ideal conditions determined, reusability of the AgNPs-Fe2O3 nanocatalyst was measured, showing a short reduction (about 8%) of its photocatalytic activity after 5 cycles. Thus, the Fe2O3 nanocatalyst can be considered a promising catalyst in the heterogeneous photocatalysis for application in the degradation of organic dyes in aqueous solution.
RESUMEN
Three different lots of a residual Ziegler-Natta catalyst slurry (bearing Ti and Mg) obtained from an industrial petrochemical plant were employed as sources for the photocatalyst supported on silica. The effect of additional magnesium (1.0-25.0 wt% Mg/SiO2) on the photocatalytic properties of the doped materials was investigated. Doping the titania-based photocatalyst with Mg results in a shift in the absorption threshold toward the visible spectrum. The optical band gap energy of the bare supported photocatalyst was in the range of 2.5 eV and shifted to 1.72 eV after 25 wt% Mg doping. The systems were evaluated for the photodegradation of one dye (rhodamine B (RhB)) and two drugs (paracetamol and diclofenac sodium) either under ultraviolet (UV) (365 nm - UVA) or visible radiation, separately. Among the evaluated systems, doping with 25 wt% Mg afforded the highest degradation values for the target molecules under UV and visible radiation (i.e. 87%, 60% and 55% of the RhB, paracetamol and diclofenac under UV, respectively, and 82%, 48.3% and 48% under visible irradiation, respectively).
Asunto(s)
Acetaminofén/química , Diclofenaco/química , Magnesio/química , Rodaminas/química , Titanio/química , Contaminantes Químicos del Agua/química , Catálisis , Luz , Magnesio/efectos de la radiación , Fotólisis , Dióxido de Silicio/química , Titanio/efectos de la radiación , Purificación del Agua/métodosRESUMEN
Agroindustrial wastes (rice husk, exhausted bark acacia, and tobacco dust) and foundry sands from the iron foundry industry were employed as a support source for photocatalysts. TiCl4 was used as the titanium precursor in the preparation of the supported photocatalysts. The solids were characterized by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), diffuse reflectance spectroscopy over the ultraviolet range (DRS-UV), X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), nitrogen adsorption-desorption at -196 °C and zeta potential (ZP) measurements. The systems were evaluated for the photodegradation of rhodamine B (RhB). Among the tested systems, the highest percentage of dye degradation was reached by the catalyst prepared with foundry sand supports, with values of 65% under ultraviolet and 39% under visible radiation, whereas under the same conditions, the catalyst prepared with rice husk showed the best photocatalytic performance among the samples prepared with agroindustrial wastes with values of 43% under ultraviolet and 38% under visible radiation. Strong Spearman's correlations among the photocatalytic activity, the zeta potential (ζp>0.900) and the band gap energy (ζp>0.895) were observed. Exploratory tests with tap water samples revealed that the system may be sensitive to other analytes present in these environmental samples.