Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 15: 1356598, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38666018

RESUMEN

Introduction: Asthma is a condition of airflow limitation, common throughout the world, with high mortality rates, especially as it still faces some obstacles in its management. As it constitutes a public health challenge, this study aimed to investigate the effect of copaiba oil (e.g., Copaifera langsdorffii), as a treatment resource, at doses of 50 and 100 mg/kg on certain mediators of acute lung inflammation (IL-33, GATA3, FOXP3, STAT3, and TBET) and early mechanisms of lung remodeling (degradation of elastic fiber tissues, collagen deposition, and goblet cell hyperplasia). Methods: Using an ovalbumin-induced acute allergic asthma model in BALB/c mice, we analyzed the inflammatory mediators through immunohistochemistry and the mechanisms of lung remodeling through histopathology, employing orcein, Masson's trichrome, and periodic acid-Schiff staining. Results: Copaiba oil treatment (CO) reduced IL-33 and increased FOXP3 by stimulating the FOXP3/GATA3 and FOXP3/STAT3 pathways. Additionally, it upregulated TBET, suggesting an additional role in controlling GATA3 activity. In the respiratory epithelium, CO decreased the fragmentation of elastic fibers while increasing the deposition of collagen fibers, favoring epithelial restructuring. Simultaneously, CO reduced goblet cell hyperplasia. Discussion: Although additional research is warranted, the demonstrated anti-inflammatory and re-epithelializing action makes CO a viable option in exploring new treatments for acute allergic asthma.

2.
Foods ; 13(4)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38397516

RESUMEN

Osteoarthritis (OA) persistently activates nociceptors, leading to chronic pain, which is often accompanied by the comorbid development of emotional impairments (anxiety and depression), an effect associated with microgliosis. Baccharis dracunculifolia DC (Asteraceae), a Brazilian edible plant, is an important source of active compounds with anti-inflammatory abilities. Thus, we evaluated its ability to reverse OA-induced nociceptive and emotional-like impairments in osteoarthritic ovariectomized female rats using the kaolin/carrageenan (K/C) model. Four weeks after OA induction, mechanical hyperalgesia was confirmed, and the treatment started. Control animals (SHAMs) were treated with phosphate-buffered saline (PBS), while arthritic animals (ARTHs) either received PBS or B. dracunculifolia 50 mg/kg (Bd50) and 100 mg/kg (Bd100), via gavage, daily for five weeks. At the end of the treatment, anxiety-like behavior was assessed using the Open Field Test (OFT), anhedonia was assessed using the Sucrose Preference Test (SPT), and learned helplessness was assessed using the Forced Swimming Test (FST). After occision, microglia were stained with IBA-1 and quantified in brain sections of target areas (prefrontal cortex, amygdala, and periaqueductal grey matter). Treatment with B. dracunculifolia extract reversed OA-induced mechanical hyperalgesia and partly improved depressive-like behavior in OA animals' concomitant to a decrease in the number of M1 microglia. Our findings suggest that B. dracunculifolia extracts can potentially be used in the food industry and for the development of nutraceuticals and functional foods.

3.
Antibiotics (Basel) ; 12(11)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37998803

RESUMEN

Currently, biofilm-forming bacteria are difficult to treat by conventional antibiotic therapy and are, thus, becoming a clinical and epidemiological problem worldwide. Medicinal plants have been identified as novel alternative treatments due to their therapeutic and antimicrobial effects. In this context, the present study aimed to determine the total phenolic content, antioxidant capacity, and antimicrobial and anti-biofilm potential of nine extracts of Hymenaea courbaril (Fabaceae), popularly known as Jatobá. Furthermore, extracts that exhibited biofilm inhibitory activity against S. aureus (ATCC 25923) were selected for UPLC-HRMS/MS chemical analysis. Our results showed a high total phenolic content, mainly in the stem bark extract, and that the plant is rich in compounds with antioxidant activity. In the anti-biofilm analysis, leaf extracts stood out in comparison with chloramphenicol, with inhibition percentages of 78.29% and 78.85%, respectively. Through chemical analysis by UPLC-HRMS/MS, chrysoeriol-7-O-neohesperidoside, isorhamnetin-3-O-glucoside, and 3,7-di-O-methylquercetin were annotated for the first time in the leaves of H. courbaril. Therefore, these results showed the potential use of H. courbaril as an antioxidant and point to its use in antimicrobial therapy with an anti-biofilm effect.

4.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37895937

RESUMEN

Breast cancer (BC) is the most diagnosed cancer worldwide, mainly affecting the epithelial cells from the mammary glands. When it expresses the estrogen receptor (ER), the tumor is called luminal BC, which is eligible for endocrine therapy with hormone signaling blockade. Hormone therapy is essential for the survival of patients, but therapeutic resistance has been shown to be worrying, significantly compromising the prognosis. In this context, the need to explore new compounds emerges, especially compounds of plant origin, since they are biologically active and particularly promising. Natural products are being continuously screened for treating cancer due to their chemical diversity, reduced toxicity, lower side effects, and low price. This review summarizes natural compounds for the treatment of luminal BC, emphasizing the activities of these compounds in ER-positive cells. Moreover, their potential as an alternative to endocrine resistance is explored, opening new opportunities for the design of optimized therapies.

5.
Antibiotics (Basel) ; 12(3)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36978489

RESUMEN

Vernonia polyanthes is a medicinal plant used to treat many disorders, including infectious diseases. This study investigated the chemical constituents and the antibacterial activity of V. polyanthes leaf rinse extract (Vp-LRE). The chemical characterization of Vp-LRE was established using ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF-MS), and glaucolide A was identified through 1H and 13C nuclear magnetic resonance (NMR) and mass fragmentation. The cytotoxicity was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT). The antibacterial activity was assessed by minimal inhibitory concentration and minimal bactericidal concentration. Interactions between ligands and beta-lactamase were evaluated via molecular docking. UHPLC/Q-TOF-MS detected acacetin, apigenin, chrysoeriol, isorhamnetin, isorhamnetin isomer, kaempferide, 3',4'-dimethoxyluteolin, 3,7-dimethoxy-5,3',4'-trihydroxyflavone, piptocarphin A and glaucolide A. Vp-LRE (30 µg/mL) and glaucolide A (10 and 20 µg/mL) were cytotoxic against RAW 264.7 cells. Glaucolide A was not active, but Vp-LRE inhibited the Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Escherichia coli, Salmonella Choleraesuis and Typhimurium, with a bacteriostatic effect. The compounds (glaucolide A, 3',4'-dimethoxyluteolin, acacetin and apigenin) were able to interact with beta-lactamase, mainly through hydrogen bonding, with free energy between -6.2 to -7.5 kcal/mol. These results indicate that V. polyanthes is a potential natural source of phytochemicals with a significant antibiotic effect against MRSA strains.

6.
Curr Top Med Chem ; 23(11): 943-955, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36748811

RESUMEN

BACKGROUND: Effective cancer treatment still challenges medicine since the strategies employed so far are not sufficiently safe and capable of specifically eliminating tumor cells. Prostate cancer (PCa) is a highly incident malignant neoplasm, and the outcome of patients, especially those with advanced castration-resistant PCa (CRPC), depends directly on the efficacy of the therapeutic agents, such as docetaxel (DOC). OBJECTIVES: This study investigated the synergistic potentiation of 4-nerolidylcatechol (4-NC) with DOC in inhibiting androgen-independent PCa cells. METHODS: The cytotoxic effect of 4-NC was evaluated against non-tumorigenic (RWPE-01) and PCa cell lines (LNCaP and PC-3), and the antiproliferative potential of 4-NC was assessed by flow cytometry and colony formation. The Chou-Talalay method was applied to detect the synergistic effect of 4-NC and DOC, and the mechanism of anticancer activities of this combination was investigated by analyzing players in epithelial-mesenchymal transition (EMT). RESULTS: 4-NC significantly reduced the viability of PC-3 cells in a dose-dependent manner, decreasing colony formation and proliferation. The combination of 4-NC and DOC was synergistic in the androgen-independent cells and allowed the reduction of DOC concentration, with increased cytotoxicity and induction of apoptosis when compared to compounds alone. Furthermore, when 4- NC was co-administered with DOC, higher expression levels of proteins associated with the epithelial phenotype were observed, controlling EMT in PC-3 cells. CONCLUSION: Collectively, these data demonstrated, for the first time, that the combination of 4-NC with reduced doses of DOC could be especially valuable in the suppression of oncogenic mechanisms of androgen-independent PCa cells.


Asunto(s)
Andrógenos , Neoplasias de la Próstata , Humanos , Masculino , Docetaxel/farmacología , Andrógenos/farmacología , Andrógenos/uso terapéutico , Taxoides/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Línea Celular Tumoral , Proliferación Celular
7.
J Control Release ; 352: 712-725, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36374787

RESUMEN

Breast cancer is the type of cancer with the highest incidence in women around the world. Noteworthy, the triple-negative subtype affects 20% of the patients while presenting the highest death rate among subtypes. This is due to its aggressive phenotype and the capability of invading other tissues. In general, tumor-associated macrophages (TAM) and other immune cells, are responsible for maintaining a favorable tumor microenvironment for inflammation and metastasis by secreting several mediators such as pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α, chemokines like CCL2, and other proteins, as metalloproteinases of matrix (MMP). On the other hand, immunomodulatory agents can interfere in the immune response of TAM and change the disease prognosis. In this work, we prepared nanostructured lipid carriers containing kaurenoic acid (NLC-KA) to evaluate the effect on cytokine production in vitro of bone marrow-derived macrophages (BMDM) and the migratory process of 4 T1 breast cancer cells. NLC-KA prepared from a blend of natural lipids was shown to have approximately 90 nm in diameter with low polydispersity index. To test the effect on cytokine production in vitro in NLC-KA treated BMDM, ELISA assay was performed and pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α were quantified. The formulation reduced the secretion of IL-1ß and TNF-α cytokines while presenting no hemolytic activity. Noteworthy, an anti-migratory effect in 4 T1 breast cancer cells treated with NLC-KA was observed in scratch assays. Further, MMP9 and CCL2 gene expressions in both BMDM and 4 T1 treated cells confirmed that the mechanism of inhibition of migration is related to the blockade of this pathway by KA. Finally, cell invasion assays confirmed that NLC-KA treatment resulted in less invasiveness of 4 T1 cells than control, and it is independent of CCL2 stimulus or BMDM direct stimulus. Ultimately, NLC-KA was able to regulate the cytokine production in vitro and reduce the migration of 4 T1 breast cancer cells by decreasing MMP9 gene expression.


Asunto(s)
Neoplasias , Factor de Necrosis Tumoral alfa , Femenino , Animales , Factor de Necrosis Tumoral alfa/metabolismo , Metaloproteinasa 9 de la Matriz , Interleucina-6 , Citocinas/genética , Expresión Génica , Movimiento Celular
8.
Pharmaceutics ; 14(5)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35631657

RESUMEN

Schistosomiasis, caused by parasites of the genus Schistosoma, is a neglected disease with high global prevalence, affecting more than 240 million people in several countries. Praziquantel (PZQ) is the only drug currently available for the treatment. S. mansoni NTPDases (known as SmNTPDases, ATP diphosphohydrolases or ecto-apyrases) are potential drug targets for the discovery of new antischistosomal drugs. In this study, we screen NTPDases inhibitors from Centella erecta (Apiaceae) using an ultrafiltration combined UHPLC-QTOF-MS method and potato apyrase, identifying asiaticoside as one of the apyrase-binding compounds. After isolation of asiaticoside from C. erecta extract, we assessed its in vivo antischistosomal activities against Schistosoma mansoni worms and its in vitro enzymatic apyrase inhibition. Also, molecular docking analysis of asiaticoside against potato apyrase, S. mansoni NTPDases 1 and 2 were performed. Asiaticoside showed a significant in vitro apyrase inhibition and molecular docking studies corroborate with its possible actions in potato apyrase and S. mansoni NTPDases. In mice harboring a patent S. mansoni infection, a single oral dose of asiaticoside (400 mg/kg. p.o.) showed significantly in vivo antischistosomal efficacy, markedly decreasing the total worm load and egg burden, giving support for further exploration of apyrase inhibitors as antischistosomal agents.

9.
Chem Biodivers ; 18(11): e2100604, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34608744

RESUMEN

Schistosomiasis, a neglected tropical disease caused by Schistosoma species, harms over 250 million people in several countries. The treatment is achieved with only one drug, praziquantel. Cardamonin, a natural chalcone with in vitro schistosomicidal activity, has not been in vivo evaluated against Schistosoma. In this work, we evaluated the in vivo schistosomicidal activities of cardamonin against Schistosoma mansoni worms and conducted enzymatic apyrase inhibition assay, as well as molecular docking analysis of cardamonin against potato apyrase, S. mansoni NTPDase 1 and S. mansoni NTPDase 2. In a mouse model of schistosomiasis, the oral treatment with cardamonin (400 mg/kg) showed efficacy against S. mansoni, decreasing the total worm load in 46.8 % and reducing in 54.5 % the number of eggs in mice. Cardamonin achieved a significant inhibition of the apyrase activity and the three-dimensional structure of the potato apyrase, obtained by homology modeling, showed that cardamonin may interact mainly through hydrogen bonds. Molecular docking studies corroborate with the action of cardamonin in binding and inhibiting both potato apyrase and S. mansoni NTPDases.


Asunto(s)
Apirasa/antagonistas & inhibidores , Chalconas/farmacología , Inhibidores Enzimáticos/farmacología , Piperaceae/química , Extractos Vegetales/farmacología , Schistosoma mansoni/efectos de los fármacos , Animales , Apirasa/metabolismo , Biomphalaria , Chalconas/química , Chalconas/aislamiento & purificación , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Femenino , Ratones , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Solanum tuberosum/enzimología
10.
Nanomedicine (Lond) ; 16(19): 1641-1655, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34256609

RESUMEN

Aim: To isolate licochalcone A (LicoA) from licorice, prepare LicoA-loaded solid lipid nanoparticles (L-SLNs) and evaluate the L-SLNs in vitro and in vivo against Schistosoma mansoni. Materials & methods: LicoA was obtained by chromatographic fractionation and encapsulated in SLNs by a modified high shear homogenization method. Results: L-SLNs showed high encapsulation efficiency, with satisfactory particle size, polydispersity index and Zeta potential. Transmission electron microscopy revealed that L-SLNs were rounded and homogenously distributed. Toxicity studies revealed that SLNs decreased the hemolytic and cytotoxic properties of LicoA. Treatment with L-SLNs showed in vivo efficacy against S. mansoni. Conclusion: L-SLNs are efficient in reducing worm burden and SLNs may be a promising delivery system for LicoA to treat S. mansoni infections.


Asunto(s)
Chalconas , Nanopartículas , Portadores de Fármacos , Lípidos , Tamaño de la Partícula
11.
Parasitol Int ; 83: 102317, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33676013

RESUMEN

Granulomas are inflammatory tissue responses directed to a set of antigens. Trapped Schistosoma mansoni eggs promote productive granulomas in the tissues, and they are the main damage caused by schistosomiasis. Some S. mansoni antigenic proteins may have a direct involvement in the resolution of the granulomatous response. The ATP diphosphohydrolases isoforms of this parasite are immunogenic, expressed in all phases of the parasite life cycle and secreted by eggs and adult worms. Potato apyrase is a vegetable protein that cross-reactive with parasite ATP diphosphohydrolases isoforms. In this study, the vegetable protein was purified, before being inoculated in C57BL/6 mice that were later infected with cercariae. Sixty days after infection, adult worms were recovered, antibodies and cytokines were measured, and morphological granuloma alterations evaluated. Immunization of the animals induced significant levels of IgG and IgG1 antibodies and IFN-γ, IL-10 and IL-5 cytokines, but not IL-13, suggesting that potato apyrase is an immunoregulatory protein. Supporting this hypothesis, it was found that liver damage associated with schistosomiasis was mitigated, reducing the size of the areas affected by granuloma to 35% and increasing the presence of multinucleated giant cells in this environment. In conclusion, potato apyrase was found to be effective immunomodulatory antigen for murine schistosomiasis.


Asunto(s)
Apirasa/química , Células Gigantes/efectos de los fármacos , Enfermedades de los Roedores/parasitología , Schistosoma mansoni/fisiología , Esquistosomiasis mansoni/veterinaria , Solanum tuberosum/química , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Schistosoma mansoni/efectos de los fármacos , Esquistosomiasis mansoni/parasitología , Solanum tuberosum/enzimología
12.
J Toxicol Environ Health A ; 83(21-22): 673-686, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-32886024

RESUMEN

Licochalcone A (LicoA) is a flavonoid derived from Glycyrrhiza spp. plants. The present study aimed to investigate the antioxidant, cytotoxic, genotoxic, and chemopreventive effects of LicoA in in vitro and in vivo systems. The results showed that LicoA (197.1 µM) scavenged 77.92% of free radicals. Concentrations of 147.75 µM or higher LicoA produced cytotoxicity in Chinese hamster ovary (CHO) fibroblasts. LicoA treatments of 4.43 to 10.34 µM did not exert genotoxic activity, but at 11.8 µM significantly lowered nuclear division indexes, compared to negative control, revealing cytotoxicity. Lower concentrations (1.85 to 7.39 µM) exhibited protective activity against chromosomal damage induced by doxorubicin (DXR) or methyl methanesulfonate (MMS) in CHO cells. LicoA exerted no marked influence on DXR-induced genotoxicity in mouse erythrocytes, but reduced pre-neoplastic lesions induced by 1,2-dimethylhydrazine (DMH) in rat colon at 3.12 to 50 mg/kg b.w. Biochemical markers and body weight indicated no apparent toxicity. These findings contribute to better understanding the mechanisms underlying LicoA-initiated activity as a promising chemopreventive compound. ABBREVIATIONS: AC, aberrant crypts; ACF, aberrant crypt foci; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BOD, biochemical oxygen demand; CHO, Chinese hamster ovary fibroblast; DMH, 1,2-dimethylhydrazine; DMSO, dimethyl sulfoxide; DPPH, 2,2-diphenyl-1-picrylhydrazyl; DXR, doxorubicin hydrochloride; EDTA, ethylenediaminetetraacetic acid; GA, gallic acid; LicoA, licochalcone A; MMS, methyl methanesulfonate; MNBC, micronucleated binucleated cells; MNPCE, micronucleated polychromatic erythrocyte; NCE, normochromatic erythrocyte; NDI, nuclear division index; PBS, phosphate-buffered saline; PCE, polychromatic erythrocyte; XTT, 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide.


Asunto(s)
Antioxidantes/farmacología , Chalconas/farmacología , Citotoxinas/farmacología , Mutágenos/farmacología , Sustancias Protectoras/farmacología , Animales , Masculino , Ratones
13.
Curr Protein Pept Sci ; 20(9): 873-884, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31272352

RESUMEN

ATP-diphosphohydrolases (EC 3.6.1.5), also known as ATPDases, NTPases, NTPDases, EATPases or apyrases, are enzymes that hydrolyze a variety of nucleoside tri- and diphosphates to their respective nucleosides, being their activities dependent on the presence of divalent cations, such as calcium and magnesium. Recently, ATP-diphosphohydrolases were identified on the surface of several parasites, such as Trypanosoma sp, Leishmania sp and Schistosoma sp. In parasites, the activity of ATPdiphosphohydrolases has been associated with the purine recuperation and/or as a protective mechanism against the host organism under conditions that involve ATP or ADP, such as immune responses and platelet activation. These proteins have been suggested as possible targets for the development of new antiparasitic drugs. In this review, we will comprehensively address the main aspects of the location and function of ATP-diphosphohydrolase in parasites. Also, we performed a detailed research in scientific database of recent developments in new natural and synthetic inhibitors of the ATPdiphosphohydrolases in parasites.


Asunto(s)
Adenosina Trifosfato/metabolismo , Antígenos CD/metabolismo , Apirasa/metabolismo , Parásitos/metabolismo , Animales , Antiprotozoarios/química , Antiprotozoarios/farmacología , Apirasa/antagonistas & inhibidores , Descubrimiento de Drogas , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Parásitos/efectos de los fármacos
14.
Fitoterapia ; 128: 142-147, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29772297

RESUMEN

Kaurenoic acid (KA) is a kaurane diterpene found in several medicinal plants that displays biological activities, such as anti-inflammatory, smooth muscle relaxant and hypotensive response. However, there are no pharmacokinetic data available about this molecule. The purpose of the study was to determine the pharmacokinetic profile and the oral bioavailability of KA in rats. Wistar rats submitted to jugular vein cannulation received 50 mg/kg of KA by intravenous or oral route. The implanted cannula allowed intravenous administration and serial blood collection along 10 h. Analytical quantification was performed by reversed phase HPLC-UV and mobile phase composed by acetonitrile:acidified water (70:30 v/v). The validated analytical method showed precision, accuracy, robustness, reliability and linearity between 0.75 and 100 µg/mL. KA administered intravenously showed a linear and two-compartment kinetic behavior at the tested dose. The following pharmacokinetic parameters were determined: Cmax = 22.17 ±â€¯1.65 mg/L; V = 14.53 ±â€¯1.47 L/kg; CL = 17.67 ±â€¯1.50 mL/min/kg; AUC0-∞ = 2859.65 ±â€¯278.42 mg·min/L, K = 0.073 ±â€¯0.005 h-1 and t1/2ß = 9.52 ±â€¯0.61 h. Oral treatment did not provide detectable plasma levels of KA, avoiding the determination of its bioavailability.


Asunto(s)
Diterpenos/farmacocinética , Fabaceae/química , Administración Intravenosa , Administración Oral , Animales , Disponibilidad Biológica , Masculino , Ratas Wistar
15.
Biomed Pharmacother ; 96: 64-71, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28965009

RESUMEN

This paper is the first report on the in vitro effects of licochalcone A, a chalcone isolated from Glycyrrhiza inflate Batalin (Leguminosae), on Schistosoma mansoni adult worms. In vitro, licochalcone A afforded lethal concentrations for 50% of parasites (LC50) of 9.12±1.1 and 9.52±0.9µM against female and male adult worms, respectively, at 24h. Additionally, the compound reduced the total number of S. mansoni eggs and affected the development of eggs produced by S. mansoni adult worms. Together, the results achieved after 24h showed that licochalcone A was 55.7- and 53.3-fold more toxic to S. mansoni female and male adult worms than to Chinese hamster ovary fibroblasts cells, respectively. Treatment with licochalcone A elicited drastic changes in the tegument of S. mansoni adult worms, as well as mitochondrial alteration and chromatin condensation. Licochalcone A also increased the superoxide anion level and decreased the superoxide dismutase activity in S. mansoni adult worms. Overall, our results indicated that licochalcone A displays in vitro schistosomicidal activity. This effect may result from increased production of reactive oxygen species (ROS) induced by the action of licochalcone A. The resulting ROS could act on the S. mansoni tegument and membranes and help induce the death of S. mansoni adult worms.


Asunto(s)
Chalconas/farmacología , Glycyrrhiza , Extractos Vegetales/farmacología , Schistosoma mansoni/efectos de los fármacos , Schistosoma mansoni/metabolismo , Factores de Edad , Animales , Relación Dosis-Respuesta a Droga , Femenino , Locomoción/efectos de los fármacos , Locomoción/fisiología , Masculino , Ratones , Ratones Endogámicos BALB C , Óvulo/efectos de los fármacos , Óvulo/metabolismo , Óvulo/patología , Extractos Vegetales/aislamiento & purificación , Especies Reactivas de Oxígeno/metabolismo , Schistosoma mansoni/citología , Caracoles
16.
Planta Med ; 80(6): 490-2, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24687736

RESUMEN

This study evaluated the antiproliferative activity of the Brazilian green propolis and Baccharis dracunculifolia extracts and their major compounds artepillin C and baccharin in different tumor cell lines. The lowest IC50 values observed for Brazilian green propolis and B. dracunculifolia extracts were 41.0 ± 4.5 µg/mL for U343 and 44.9 ± 7.1 µg/mL for HepG2, respectively. Regarding artepillin C and baccharin, the lowest IC50 values were 20.1 ± 2.9 for U343 and 13.0 ± 1.5 µg/mL for B16F10, respectively. For the association of artepillin C plus baccharin, the lowest IC50 result was 35.2 ± 0.5 µg/mL for B16F10. Artepillin C and baccharin were more cytotoxic than both Brazilian green propolis and B. dracunculifolia extracts. No additive or synergistic effect was observed for the association of artepillin C plus baccharin.


Asunto(s)
Antineoplásicos/uso terapéutico , Baccharis/química , Neoplasias/tratamiento farmacológico , Fenilpropionatos/uso terapéutico , Fitoterapia , Própolis/uso terapéutico , Tricotecenos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Apiterapia , Brasil , Células HT29 , Células HeLa , Células Hep G2 , Humanos , Concentración 50 Inhibidora , Células MCF-7 , Fenilpropionatos/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Própolis/farmacología , Tricotecenos/farmacología
17.
Nutr Cancer ; 65(7): 1098-103, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23915392

RESUMEN

Artepillin C (3,5-diprenyl-p-coumaric acid) is one of the major phenolic compounds found in Brazilian green propolis, as well as in its botanical source, Baccharis dracunculifolia DC (Asteraceae). The present study evaluated the possible genotoxic and protective activities of artepillin C, in vitro, using methyl methanesulfonate (MMS) as a positive control, by comet and micronucleus assays. The cultures of Chinese hamster lung fibroblasts (V79 cells) were treated with different concentrations of artepillin C (2.5, 5.0, 10.0, and 20 µM). In antigenotoxicity assessment, the 3 concentrations of artepillin C (2.5, 5.0, and 10.0 µM) were associated with MMS (200 µM-comet assay and 400 µM-micronucleus assay). A statistically significant increase in the DNA damage and micronucleus frequencies was observed in the culture treated with the highest concentration of the artepillin C in comparison to the control group. All concentrations of artepillin C showed protective activity in relation to MMS-induced genotoxicity, which may be due to its antioxidant properties.


Asunto(s)
Ensayo Cometa , Daño del ADN/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Pruebas de Micronúcleos , Fenilpropionatos/farmacología , Animales , Antimutagênicos/farmacología , Antioxidantes/farmacología , Brasil , Cricetinae , Fibroblastos/citología , Pulmón/citología , Pulmón/efectos de los fármacos , Metilmetanosulfonato/metabolismo
18.
Artículo en Inglés | MEDLINE | ID: mdl-22924053

RESUMEN

Miconia langsdorffii Cogn. (Melastomataceae), Roupala montana Aubl. (Proteaceae), Struthanthus syringifolius (Mart.) (Loranthaceae), and Schefflera vinosa (Cham. & Schltdl.) Frodin (Araliaceae) are plant species from the Brazilian Cerrado whose schistosomicidal potential has not yet been described. The crude extracts, fractions, the triterpenes betulin, oleanolic acid, ursolic acid and the flavonoids quercetin 3-O-ß-D-rhamnoside, quercetin 3-O-ß-D-glucoside, quercetin 3-O-ß-D-glucopyranosyl-(1-2)-α-L-rhamnopyranoside and isorhamnetin 3-O-ß-D-glucopyranosyl-(1-2)-α-L-rhamnopyranoside were evaluated in vitro against Schistosoma mansoni adult worms and the bioactive n-hexane fractions of the mentioned species were also analyzed by GC-MS. Betulin was able to cause worm death percentage values of 25% after 120 h (at 100 µM), and 25% and 50% after 24 and 120 h (at 200 µM), respectively; besides the flavonoid quercetin 3-O-ß-D-rhamnoside promoted 25% of death of the parasites at 100 µM. Farther the flavonoids quercetin 3-O-ß-D-glucoside and quercetin 3-O-ß-D-rhamnoside at 100 µM exhibited significantly reduction in motor activity, 75% and 87.5%, respectively. Biological results indicated that crude extracts of R. montana, S. vinosa, and M. langsdorffii and some n-hexane and EtOAc fractions of this species were able to induce worm death to some extent. The results suggest that lupane-type triterpenes and flavonoid monoglycosides should be considered for further antiparasites studies.

19.
J Food Sci ; 77(8): T138-42, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22860599

RESUMEN

Baccharin is one of the major chemical compounds isolated from the aerial parts of Baccharis dracunculifolia DC (Asteraceae), a native plant of South America and the most important botanical source of the Brazilian green propolis that has been used in alternative medicine to treat inflammation, liver disorders, and stomach ulcers. The present study was carried out in V79 cells to determine the possible genotoxic and antigenotoxic activities of baccharin utilizing comet and micronucleus assays, where 2 known mutagenic agents with different mechanisms of DNA damage were used as positive controls. The V79 cells were treated with concentrations of baccharin (0.25, 0.5, 1.0, and 2.0 µg/mL) and for to investigate the antigenotoxicity these concentrations were associated with methyl methanesulfonate (MMS; 200 µM-comet assay and 400 µM-micronucleus assay) or hydrogen peroxide (H(2)O(2;) 50 µM-comet assay and 100 µM-micronucleus assay). Statistically significant differences in the rate of DNA damage were observed in cultures treated with the highest concentration of baccharin when compared to the control group, but this difference was not found in the micronucleus assay. The results also showed that the frequencies of DNA damage and micronuclei induced by MMS and H(2)O(2) were significantly reduced after treatment with baccharin. The baccharin showed a chemoprevention effect and can be the chemical compound responsible for the antigenotoxicity also demonstrated by the B. dracunculifolia. The antioxidant potential of baccharin may be related to its chemoprevention activity induced against both genomic and chromosomal damages.


Asunto(s)
Baccharis/química , Daño del ADN/efectos de los fármacos , Peróxido de Hidrógeno/toxicidad , Metilmetanosulfonato/toxicidad , Extractos Vegetales/farmacología , Tricotecenos/farmacología , Animales , Antioxidantes/farmacología , Brasil , Línea Celular , Ensayo Cometa , Cricetinae , Pruebas de Micronúcleos , Mutágenos/toxicidad
20.
J Toxicol Environ Health A ; 75(16-17): 1102-9, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22852859

RESUMEN

As shown in numerous studies, natural compounds may exert adverse effects, mainly when associated with some drugs. The hydroalcoholic extract of Mikania glomerata is the pharmaceutical form present in commercially available syrup used for the treatment of respiratory diseases in popular Brazilian medicine. The objective of the present investigation was (1) to evaluate the preventive effects of standardized hydroalcoholic extract of M. glomerata (MEx) against antitumoral drug doxorubicin (DXR)-induced micronucleated polychromatic erythrocytes (MNPCE) in a subchronic assay in mice, and (2) to determine the liver content of malondialdehyde (MDA) and the antioxidants glutathione (GSH) and vitamin E (VE). Male Swiss mice were treated for 30 d with MEx added to drinking water, combined or not with DXR (90 mg/kg body weight) injected intraperitoneally (ip) 24 h before analysis. The results demonstrated that MEx produced no genotoxic damage, but significantly increased the frequency of MNPCE induced by DXR, indicating a drug-drug interaction. This rise was not accompanied by lipid peroxidation or antioxidants level reduction, as measured by MDA, GSH, and VE. Despite the presence of coumarin (a known antioxidant), MEx may exert adverse effects probably in association with mutagenic compounds, although this effect on DNA damage did not involve oxidative stress.


Asunto(s)
Antioxidantes/metabolismo , Doxorrubicina/toxicidad , Peroxidación de Lípido/efectos de los fármacos , Hígado/efectos de los fármacos , Mikania/química , Extractos Vegetales/toxicidad , Animales , Daño del ADN/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas , Hígado/metabolismo , Masculino , Ratones , Pruebas de Micronúcleos , Mutágenos , Extractos Vegetales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...