Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 170: 115981, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38091634

RESUMEN

CXCL12 is a key chemokine implicated in neuroinflammation, particularly during Zika virus (ZIKV) infection. Specifically, CXCL12 is upregulated in circulating cells of ZIKV infected patients. Here, we developed a lipid nanoparticle (LNP) to deliver siRNA in vivo to assess the impact of CXCL12 silencing in the context of ZIKV infection. The biodistribution of the LNP was assessed in vivo after intravenous injection using fluorescently tagged siRNA. Next, we investigated the ability of the developed LNP to silence CXCL12 in vivo and assessed the resulting effects in a murine model of ZIKV infection. The LNP encapsulating siRNA significantly inhibited CXCL12 levels in the spleen and induced microglial activation in the brain during ZIKV infection. This activation was evidenced by the enhanced expression of iNOS, TNF-α, and CD206 within microglial cells. Moreover, T cell subsets exhibited reduced secretion of IFN-É£ and IL-17 following LNP treatment. Despite no observable alteration in viral load, CXCL12 silencing led to a significant reduction in type-I interferon production compared to both ZIKV-infected and uninfected groups. Furthermore, we found grip strength deficits in the group treated with siRNA-LNP compared to the other groups. Our data suggest a correlation between the upregulated pro-inflammatory cytokines and the observed decrease in strength. Collectively, our results provide evidence that CXCL12 silencing exerts a regulatory influence on the immune response in the brain during ZIKV infection. In addition, the modulation of T-cell activation following CXCL12 silencing provides valuable insights into potential protective mechanisms against ZIKV, offering novel perspectives for combating this infection.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Humanos , Ratones , Animales , ARN Interferente Pequeño , Distribución Tisular , Encéfalo , Inmunidad , Quimiocina CXCL12/genética
2.
Inflamm Res ; 72(10-11): 2073-2088, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37837557

RESUMEN

OBJECTIVE AND DESIGN: The present study aimed to investigate the neurochemical and behavioral effects of the acute consequences after coronavirus infection through a murine model. MATERIAL: Wild-type C57BL/6 mice were infected intranasally (i.n) with the murine coronavirus 3 (MHV-3). METHODS: Mice underwent behavioral tests. Euthanasia was performed on the fifth day after infection (5 dpi), and the brain tissue was subjected to plaque assays for viral titration, ELISA, histopathological, immunohistochemical and synaptosome analysis. RESULTS: Increased viral titers and mild histological changes, including signs of neuronal degeneration, were observed in the cerebral cortex of infected mice. Importantly, MHV-3 infection induced an increase in cortical levels of glutamate and calcium, which is indicative of excitotoxicity, as well as increased levels of pro-inflammatory cytokines (IL-6, IFN-γ) and reduced levels of neuroprotective mediators (BDNF and CX3CL1) in the mice brain. Finally, behavioral analysis showed impaired motor, anhedonia-like and anxiety-like behaviors in animals infected with MHV-3. CONCLUSIONS: In conclusion, the data presented emulate many aspects of the acute neurological outcomes seen in patients with COVID-19. Therefore, this model may provide a preclinical platform to study acute neurological sequelae induced by coronavirus infection and test possible therapies.


Asunto(s)
COVID-19 , Virus de la Hepatitis Murina , Humanos , Animales , Ratones , Ratones Endogámicos C57BL , Virus de la Hepatitis Murina/metabolismo , Citocinas/metabolismo , COVID-19/patología , Encéfalo/metabolismo
3.
J Neuroimmunol ; 369: 577914, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35717736

RESUMEN

Cocaine-induced neuroinflammation plays an important role in the pathophysiology of drug addiction. Evidence suggests that the immune response contributes for memory consolidation related to place preference behavior underlying cocaine administration in mice. Conditioned place preference (CPP) is a protocol extensively used to study the rewarding and/or aversive motivational effects of drug abuse in rodents, reproducing cocaine-seeking behavior in humans. Besides the variety of apparatus used in the CPP protocol, whether different types of apparatus are able to induce the same conditioned behavior response and neurobiological changes remains to be fully explored. We hypothesize that the immune response is involved in the cocaine-induced CPP and that the type of apparatus might influence this response. Herein, two- and three-compartment apparatuses were tested using the behavioral model of CPP. Cocaine-induced CPP was demonstrated in both apparatuses. However, mice injected with cocaine had decreased levels of IL-1ß, IL-6, IL-10, and GDNF in the pre-frontal cortex, and decreased CX3CL1 in the striatum, in the CPP protocol using three compartments compared to controls. While similar levels were seen in the CPP protocol using two compartments. In conclusion, the current study demonstrated that the type of apparatus might influence the investigation of neurobiological mechanisms associated with cocaine-induced CPP. Our data also suggest that the three compartment-apparatus seems to be a more appropriate model to investigate the neuroinflammatory response related to cocaine addiction.


Asunto(s)
Cocaína , Animales , Ratones , Encéfalo , Cocaína/farmacología , Citocinas , Factores de Crecimiento Nervioso
4.
Parasitol Res ; 119(1): 333-337, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31788770

RESUMEN

Chagas disease (CD) is a tropical zoonosis caused by the protozoan Trypanosoma cruzi. Severe autonomic dysfunction like reduced cardiac catecholamine-containing or acetylcholinesterase-positive innervation have been reported in CD. Renin-angiotensin system (RAS) seems to participate in the regulation of adrenal catecholamine secretion by adrenal medullary chromaffin cells, which might be dependent of nitric oxide (NO) pathways. To investigate the levels of RAS components in the adrenal gland during the acute infection with Y strain T. cruzi and in response to acute administration of an inhibitor of the enzyme NO synthase, L-NAME. Male Holtzman rats were inoculated intraperitoneally with Y strain T. cruzi and received L-NAME or tap water from one day before the infection until 13 or 17 days post-inoculation (dpi). The concentration of RAS molecules in the adrenal tissue was evaluated by ELISA immunoassay. Angiotensin converting enzyme 1 (ACE1) levels were significantly lower at 17 dpi when compared to 13 dpi. No significant differences were found compared with baseline, and no changes were detected in adrenal tissue levels of angiotensin converting enzyme 2 (ACE2), angiotensin II, or angiotensin-(1-7). Moreover, the treatment with L-NAME did not influence the levels of RAS components in adrenal tissue during the course of T. cruzi infection. We provided the first evidence that levels of RAS molecules change in the adrenal gland during acute phase of T. cruzi infection. Future studies are necessary to fully address the role of NO in RAS-associated adrenal gland function in CD.


Asunto(s)
Glándulas Suprarrenales/metabolismo , Enfermedad de Chagas/metabolismo , Óxido Nítrico/metabolismo , Sistema Renina-Angiotensina/fisiología , Trypanosoma cruzi/fisiología , Animales , Modelos Animales de Enfermedad , Masculino , NG-Nitroarginina Metil Éster/administración & dosificación , Óxido Nítrico Sintasa/antagonistas & inhibidores , Óxido Nítrico Sintasa/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Ratas , Ratas Sprague-Dawley
5.
Life Sci ; 219: 336-342, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30684542

RESUMEN

Chagas disease (CD) is an important cause of cardiomyopathy in South America. The pathophysiology of CD is still a matter of debate. Renin Angiotensin System (RAS) components are clearly involved in cardiovascular diseases. RAS molecules interact with nitric oxide (NO) pathway in blood vessel and heart tissue. Thus, the aim of this study is to investigate possible changes in RAS molecules during the infection with Y strain T. cruzi and in response to acute administration of an inhibitor of the enzyme NO synthase, l-NAME. Male Holtzman rats were inoculated intraperitoneally with Y strain T. cruzi and received l-NAME or tap water from one day before the infection until 13 or 17 days post infection (dpi). Angiotensin converting enzyme 1 (ACE1) levels were significantly higher at day 17 when compared to baseline in atrium, whereas, in ventricle, ACE2 levels were significantly higher in 13 dpi when compared to baseline. In response to l-NAME treatment, atrium tissue levels of ACE1 were significantly reduced in treated animals at day 17, while Angiotensin-(1-7) concentration in atrium significantly increased in this group at the same time-point. No changes were detected in RAS components in the ventricle. ACE2 levels in Soleus muscle were significantly reduced in treated animals at day 13. In conclusion, changes in RAS molecules were detected during acute phase of T. cruzi infection and the inhibition of NO synthesis clearly interfered with expression of ACE1 and Angiotensin-(1-7) in the atrium.


Asunto(s)
Cardiomiopatía Chagásica/metabolismo , Miocardio/metabolismo , Óxido Nítrico/antagonistas & inhibidores , Sistema Renina-Angiotensina , Animales , Masculino , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa/antagonistas & inhibidores , Óxido Nítrico Sintasa/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Ratas Sprague-Dawley , Trypanosoma cruzi
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...