Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 107(23): 7231-7250, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37741937

RESUMEN

Staphylococcus aureus is one of the most relevant mastitis pathogens in dairy cattle, and the acquisition of antimicrobial resistance genes presents a significant health issue in both veterinary and human fields. Among the different strategies to tackle S. aureus infection in livestock, bacteriophages have been thoroughly investigated in the last decades; however, few specimens of the so-called jumbo phages capable of infecting S. aureus have been described. Herein, we report the biological, genomic, and structural proteomic features of the jumbo phage vB_SauM-UFV_DC4 (DC4). DC4 exhibited a remarkable killing activity against S. aureus isolated from the veterinary environment and stability at alkaline conditions (pH 4 to 12). The complete genome of DC4 is 263,185 bp (GC content: 25%), encodes 263 predicted CDSs (80% without an assigned function), 1 tRNA (Phe-tRNA), multisubunit RNA polymerase, and an RNA-dependent DNA polymerase. Moreover, comparative analysis revealed that DC4 can be considered a new viral species belonging to a new genus DC4 and showed a similar set of lytic proteins and depolymerase activity with closely related jumbo phages. The characterization of a new S. aureus jumbo phage increases our understanding of the diversity of this group and provides insights into the biotechnological potential of these viruses. KEY POINTS: • vB_SauM-UFV_DC4 is a new viral species belonging to a new genus within the class Caudoviricetes. • vB_SauM-UFV_DC4 carries a set of RNA polymerase subunits and an RNA-directed DNA polymerase. • vB_SauM-UFV_DC4 and closely related jumbo phages showed a similar set of lytic proteins.


Asunto(s)
Bacteriófagos , Fagos de Staphylococcus , Animales , Bovinos , Femenino , Humanos , Fagos de Staphylococcus/genética , Staphylococcus aureus/genética , Proteómica , Genoma Viral , Genómica , Bacteriófagos/genética , ARN Polimerasas Dirigidas por ADN/genética , ARN de Transferencia
2.
Sci Rep ; 10(1): 5520, 2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-32218514

RESUMEN

Brazil has the second-largest dairy cattle herd in the world, and bovine mastitis still can cause significant losses for dairy farmers. Despite this fact, little information is available about milk microbial composition of Brazilian dairy cows, as well as the potential use of bacteriophages in the control of S. aureus. Here, we investigated milk bacterial composition of 28 Holstein Fresian cows (109 teats), selected in the dry-off period, using 16S rRNA analysis. Furthermore, a representative S. aureus strain (UFV2030RH1) was obtained at drying-off for isolation of a bacteriophage (vB_SauM-UFV_DC4, UFV_DC4) and bacterial genomic comparison purposes. Our outcomes revealed that Staphylococcus was the third most prevalent genus and positively correlated with subclinical mastitis events. As a major finding, genomic analyses showed the presence of adhesive matrix molecules that recognize microbial surface components (MSCRAMM) in UFV2030RH1 and might indicate great biofilm formation capability. A minimum inhibitory concentration (MIC) assay showed that resistance to ampicillin was the highest among the antibiotic tested in S. aureus 3059 and UFV2030RH1, displaying values four and sixteen times greater than MIC resistance breakpoint, respectively. Together, our results suggest that Staphylococcus is highly prevalent in dairy cows at drying-off and the use of the phage UFV_DC4 as a biocontrol agent must be investigated in future studies.


Asunto(s)
Mastitis Bovina/microbiología , Leche/microbiología , ARN Ribosómico 16S/genética , Fagos de Staphylococcus/fisiología , Staphylococcus aureus/clasificación , Resistencia a la Ampicilina , Animales , Antibacterianos/farmacología , Bovinos , ADN Bacteriano/genética , ADN Ribosómico/genética , Femenino , Genómica , Mastitis Bovina/prevención & control , Filogenia , Análisis de Secuencia de ADN , Fagos de Staphylococcus/aislamiento & purificación , Staphylococcus aureus/genética , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/virología
3.
Sci Rep ; 8(1): 6845, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29717158

RESUMEN

Bovine mastitis remains the main cause of economic losses for dairy farmers. Mammary pathogenic Escherichia coli (MPEC) is related to an acute mastitis and its treatment is still based on the use of antibiotics. In the era of antimicrobial resistance (AMR), bacterial viruses (bacteriophages) present as an efficient treatment or prophylactic option. However, this makes it essential that its genetic structure, stability and interaction with the host immune system be thoroughly characterized. The present study analyzed a novel, broad host-range anti-mastitis agent, the T4virus vB_EcoM-UFV13 in genomic terms, and its activity against a MPEC strain in an experimental E. coli-induced mastitis mouse model. 4,975 Single Nucleotide Polymorphisms (SNPs) were assigned between vB_EcoM-UFV13 and E. coli phage T4 genomes with high impact on coding sequences (CDS) (37.60%) for virion proteins. Phylogenetic trees and genome analysis supported a recent infection mix between vB_EcoM-UFV13 and Shigella phage Shfl2. After a viral stability evaluation (e.g pH and temperature), intramammary administration (MOI 10) resulted in a 10-fold reduction in bacterial load. Furthermore, pro-inflammatory cytokines, such as IL-6 and TNF-α, were observed after viral treatment. This work brings the whole characterization and immune response to vB_EcoM-UFV13, a biocontrol candidate for bovine mastitis.


Asunto(s)
Bacteriófago T4/genética , Escherichia coli/genética , Escherichia coli/virología , Mastitis Bovina/microbiología , Mastitis Bovina/terapia , Animales , Bovinos , Modelos Animales de Enfermedad , Femenino , Genoma Viral , Interleucina-6/inmunología , Mastitis Bovina/inmunología , Ratones , Ratones Endogámicos BALB C , Filogenia , Factor de Necrosis Tumoral alfa/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA