Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Gene ; 897: 148082, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38101710

RESUMEN

Transforming growth factor-ß (TGF-ß) and bone morphogenetic protein (BMP) signaling has fundamental roles in the regulation of the stem cell niche for both embryonic and adult stem cells. In zebrafish, male germ stem cell niche is regulated by follicle-stimulating hormone (Fsh) through different members of the TGF-ß superfamily. On the other hand, the specific roles of TGF-ß and BMP signaling pathways are unknown in the zebrafish male germ stem cell niche. Considering this lack of information, the present study aimed to investigate the pharmacological inhibition of TGF-ß (A83-01) and BMP (DMH1) signaling pathways in the presence of recombinant zebrafish Fsh using testicular explants. We also reanalyzed single cell-RNA sequencing (sc-RNA-seq) dataset from adult zebrafish testes to identify the testicular cellular sites of smad expression, and to understand the physiological significance of the changes in smad transcript levels after inhibition of TGF-ß or BMP pathways. Our results showed that A83-01 potentiated the pro-stimulatory effects of Fsh on spermatogonial differentiation leading to an increase in the proportion area occupied by differentiated spermatogonia with concomitant reduction of type A undifferentiated (Aund) spermatogonia. In agreement, expression analysis showed lower mRNA levels for the pluripotency gene pou5f3, and increased expression of dazl (marker of type B spermatogonia and spermatocyte) and igf3 (pro-stimulatory growth factor) following the co-treatment with TGF-ß inhibitor and Fsh. Contrariwise, the inhibition of BMP signaling nullified the pro-stimulatory effects of Fsh, resulting in a reduction of differentiated spermatogonia and increased proportion area occupied by type Aund spermatogonia. Supporting this evidence, BMP signaling inhibition increased the mRNA levels of pluripotency genes nanog and pou5f3, and decreased dazl levels when compared to control. The sc-RNA-seq data unveiled a distinctive pattern of smad expression among testicular cells, primarily observed in spermatogonia (smad 2, 3a, 3b, 8), spermatocytes (smad 2, 3a, 8), Sertoli cells (smad 1, 3a, 3b), and Leydig cells (smad 1, 2). This finding supports the notion that inhibition of TGF-ß and BMP signaling pathways may predominantly impact cellular components within the spermatogonial niche, namely spermatogonia, Sertoli, and Leydig cells. In conclusion, our study demonstrated that TGF-ß and BMP signaling pathways exert antagonistic roles in the zebrafish germ stem cell niche. The members of the TGF-ß subfamily are mainly involved in maintaining the undifferentiated state of spermatogonia, while the BMP subfamily promotes spermatogonial differentiation. Therefore, in the complex regulation of the germ stem cell niche by Fsh, members of the BMP subfamily (pro-differentiation) should be more predominant in the niche than those belonging to the TGF-ß (anti-differentiation). Overall, these findings are not only relevant for understanding the regulation of germ stem cell niche but may also be useful for expanding in vitro the number of undifferentiated spermatogonia more efficiently than using recombinant hormones or growth factors.


Asunto(s)
Pirazoles , Espermatogonias , Tiosemicarbazonas , Pez Cebra , Animales , Masculino , Espermatogonias/metabolismo , Pez Cebra/genética , Hormona Folículo Estimulante/farmacología , Hormona Folículo Estimulante/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Testículo/metabolismo , Diferenciación Celular/genética , ARN Mensajero/genética , Espermatogénesis/genética
2.
Sci Rep ; 12(1): 17650, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36271101

RESUMEN

Cannabidiol (CBD) is a substance derived from Cannabis sativa, widely studied in medicine for controlling neural diseases in humans. Besides the positive effects on humans, it also presents anxiolytic proprieties and decreases aggressiveness and stress in mammals. Therefore, CBD has the potential to increase welfare in reared animals, as it seems to reduce negative states commonly experienced in artificial environments. Here, we tested the effect of different CBD doses (0, 1, 10 and 20 mg/kg) on aggressiveness, stress and reproductive development of the Nile tilapia (Oreochromis niloticus) a fish reared worldwide for farming and research purposes. CBD mixed with fish food was offered to isolated fish for 5 weeks. The 10 mg/kg dose decreased fish's aggressiveness over time, whereas 20 mg/kg attenuated non-social stress. Both doses decreased the baseline cortisol level of fish and increased the gonadosomatic index. However, CBD 1 and 10 mg/kg doses decreased the spermatozoa number. No CBD dose affected feeding ingestion and growth variables, showing that it is not harmful to meat production amount. Despite the effect on spermatozoa, CBD supplementation exhibits high potential to benefit animals' lives in artificial environments. Therefore, we showed for the first time that CBD could be used as a tool to increase non-mammal welfare, presenting a great potential to be explored in other husbandry and captivity species.


Asunto(s)
Ansiolíticos , Cannabidiol , Cannabis , Cíclidos , Humanos , Masculino , Animales , Cannabidiol/farmacología , Hidrocortisona , Mamíferos
3.
Environ Res ; 213: 113549, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35618011

RESUMEN

Sex ratio depends on sex determination mechanisms and is a key demographic parameter determining population viability and resilience to natural and anthropogenic stressors. There is increasing evidence that the environment can alter sex ratio even in genetically sex-determined species (GSD), as elevated temperature can cause female-to-male sex reversal (neomales). Alarmingly, neomales are being discovered in natural populations of several fish, amphibian and reptile species worldwide. Understanding the basis of neomale development is important for conservation biology. Among GSD species, it is unknown whether those with chromosomal sex determination (CSD), the most common system, will better resist the influence of high temperature than those with polygenic sex determination (PSD). Here, we compared the effects of elevated temperature in two wild zebrafish strains, Nadia (NA) and Ekkwill (EKW), which have CSD with a ZZ/ZW system, against the AB laboratory strain, which has PSD. First, we uncovered novel sex genotypes and the results showed that, at control temperature, the masculinization rate roughly doubled with the addition of each Z chromosome, while some ZW and WW fish of the wild strains became neomales. Surprisingly, we found that at elevated temperatures WW fish were just as likely as ZW fish to become neomales and that all strains were equally susceptible to masculinization. These results demonstrate that the Z chromosome is not essential for male development and that the dose of W buffers masculinization at the control temperature but not at elevated temperature. Furthermore, at the elevated temperature the testes of neomales, but not of normal males, contained more spermatozoa than at the control temperature. Our results show in an unprecedented way that, in a global warming scenario, CSD species may not necessarily be better protected against the masculinizing effect of elevated temperature than PSD species, and reveal genotype-by-temperature interactions in male sex determination and spermatogenesis.


Asunto(s)
Procesos de Determinación del Sexo , Pez Cebra , Animales , Cromosomas , Femenino , Masculino , Razón de Masculinidad , Temperatura , Pez Cebra/genética
4.
J Fish Biol ; 99(5): 1719-1728, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34392530

RESUMEN

Individuals of the same species may present different reproductive tactics depending on the environment in which they develop and mature. The present study aimed to define the gonadal development phases of males and females of Astyanax rivularis and to carry out a comparative analysis of the reproductive development of specimens captured in two isolated environments of the São Francisco River basin in Serra da Canastra, Brazil (Point 1: low vegetation and river showing calm and crystalline waters with small well formations; Point 2: current waters, and well-established areas of arboreal vegetation). Thus, the gonads of A. rivularis specimens were collected, fixed and processed with techniques for light microscopy. Five maturation phases of the females' reproductive cycle were established: immature, developing, spawning capable, regressing and regenerating. Three maturation phases of the males' reproductive cycle were observed: spawning capable, regressing, and regenerating. There are differences in the phases of gonadal development of A. rivularis between the two sampling points so that, possibly, animals upstream of the waterfall demonstrate a delay in the reproductive cycle in relation to animals downstream.


Asunto(s)
Characidae , Animales , Brasil , Femenino , Gónadas , Masculino , Reproducción , Ríos
5.
Fish Physiol Biochem ; 47(3): 747-755, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32889598

RESUMEN

In view of the established climate change scenario and the consequent changes in global temperature, it is essential to study its effects on animal spermatogenesis. Therefore, the aim of this study was to verify the duration of spermatogenesis at different temperatures. For this purpose, 96 male and adult specimens of Astyanax altiparanae were kept in a closed circulation system with water temperature stabilized at 27 °C and 32 °C. Subsequently, the specimens received pulses of BrdU (bromodeoxyuridine) at a concentration of 100 mg/kg/day for 2 consecutive days, and the samples were collected daily for a period of 15 days. Their testes were removed, fixed, processed in historesin, and sectioned in 3 µm, submitted to hematoxylin/eosin staining and to bromodeoxyuridine immunodetection. Partial results of the optimum temperature experiments allowed the classification of A. altiparanae spermatogenic cells in Aund, Adiff, and type B spermatogonia, spermatocytes, spermatids, and spermatozoa. The duration of spermatogenesis was determined as approximately 6 days for animals at a temperature of 27 °C and 1 day for animals at 32 °C. The elevated temperature was also responsible for increasing cell proliferation, resulting in an increase in the number of spermatocytes, spermatids, spermatozoa, and cell death (cell pyknotic). The duration of spermatogenesis in A. altiparanae was directly affected by the elevated water temperature, causing a reduction in the estimated time of spermatogenesis.


Asunto(s)
Characidae/fisiología , Espermatogénesis , Temperatura , Animales , Masculino , Espermatozoides , Agua
6.
Gen Comp Endocrinol ; 273: 218-226, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30195025

RESUMEN

Neotropical icthyofauna represents one of the most diverse and extreme ecosystems in the world. Likewise, reproduction showed enormous diversity with different reproductive systems, modes and behavior. On the other hand, information on Neotropical fish species, in particular on male reproductive physiology is restricted to few species. This mini-review aimed to compile the existing information on spermatogenesis of Neotropical teleosts focusing on testis structure, spermatogonial niche and Sertoli cell efficiency. The first topic covers the histological analysis of the testicular structure, showing a conserved testicular pattern in relation to the phylogenetic position: basal species present anastomosing tubular testis (e.g. Astyanax altiparanae, Conorhynchos conirostris, Pimelodus maculatus, Lophiosilurus alexandri, Rhinelepis aspera, among others), while derived teleosts showed lobular testis (e.g. Cichlasoma dimerus, Cichla kelberi, Odontesthes bonariensis, Synbranchus marmoratus and others). Next to testicular structure, existing data showed that type A undifferentiated spermatogonia (Aund) is differentially distributed among the Neotropical species. Aund can be restricted at the blind-end of the germinal compartment (O. bonariensis), or spread along the germinal epithelium (A. altiparanae), or even distributed along the germinal epithelium but concentrated at the blind-end (C. kelberi and C. intermedia). Moreover, recent studies in A. altiparanae have demonstrated that within the germinal compartment, Aund have a preferential distribution in areas neighboring the interstitial compartment - the spermatogonial niche. The proximity with the interstitium suggests that interstitial cells, such as Leydig cells, are important for Aund maintenance in the testis. Finally, this mini-review highlighted Sertoli cell efficiency, showing that a single Sertoli cell can support a higher number of germ cells (80-140 spermatids) in Neotropical species evaluated at the moment (e.g. A. altiparanae, Hoplias malabaricus, Poecilia reticulata, Serrasalmus spilopleura, C. intermedia). Overall, this review provided basic and functional information on spermatogenesis of Neotropical species. More studies in this field are necessary since Neotropical region is considered one of the hotspot regions to discovery new species providing, therefore, new opportunities to investigate spermatogenesis in fish.


Asunto(s)
Peces/fisiología , Células de Sertoli/citología , Espermatogonias/citología , Testículo/anatomía & histología , Testículo/citología , Animales , Masculino , Filogenia , Células de Sertoli/metabolismo , Espermatogénesis
7.
Gen Comp Endocrinol ; 265: 230-236, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29678724

RESUMEN

Thyroid hormones (THs) play important roles in the regulation of many biological processes of vertebrates, such as growth, metabolism, morphogenesis and reproduction. An increasing number of studies have been focused on the involvement of THs in the male reproductive system of vertebrates, in particular of fish. Therefore, this mini-review aims to summarize the main findings on THs role in male reproductive system of fish, focusing on sex differentiation, testicular development and spermatogenesis. The existing data in the literature have demonstrated that THs exert their roles at the different levels of the hypothalamic-pituitary-gonadal (HPG) axis. In general a positive correlation has been shown between THs and fish reproductive status; where THs are associated with testicular development, growth and maturation. Recently, the molecular mechanisms underlying the role of THs in spermatogenesis have been unraveled in zebrafish testis. THs promote germ cell proliferation and differentiation by increasing a stimulatory growth factor of spermatogenesis produced by Sertoli cells. In addition, THs enhanced the gonadotropin-induced androgen release in zebrafish testis. Next to their functions in the adult testis, THs are involved in the gonadal sex differentiation through modulating sex-related gene expression, and testicular development via regulation of Sertoli cell proliferation. In conclusion, this mini-review showed that THs modulate the male reproductive system during the different life stages of fish. The physiological and molecular mechanisms showed a link between the thyroid and reproduction, suggesting a possibly co-evolution and interdependence of these two systems.


Asunto(s)
Peces/fisiología , Reproducción/fisiología , Testículo/efectos de los fármacos , Hormonas Tiroideas/farmacología , Animales , Masculino , Reproducción/efectos de los fármacos , Diferenciación Sexual/efectos de los fármacos , Diferenciación Sexual/fisiología , Testículo/embriología , Testículo/metabolismo , Glándula Tiroides/efectos de los fármacos , Glándula Tiroides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA