Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Vet Res ; 18(1): 223, 2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35698226

RESUMEN

BACKGROUND: Five hundred 8-d old male broilers Cobb500 were randomly allotted into 10 treatments in factorial arrangement with 5 Cu levels (0, 4, 8, 12, and 16 mg/kg), and 2 sources (Cu proteinate, CuPro and Cu sulphate, CuSO4.5H2O) for a 10-d-experiment. RESULTS: Feed conversion ratio (FCR) was better (P < 0.05) in CuPro fed chicks compared with CuSO4.5H2O group. Average daily feed intake (ADFI) decreased linearly (P < 0.05) as dietary Cu increased. A quadratic response (P < 0.05) to Cu levels was found for FCR, being optimized at 9.87 and 8.84 mg Cu/kg in CuPro and CuSO4.5H2O diets, respectively. Copper supplementation linearly increased liver Cu content (P < 0.05) and tended to linearly increase (P = 0.07) phosphorus (P) and copper in tibia. Manganese and zinc were higher (P < 0.05) in tibia of CuPro fed birds. Broilers fed CuPro exhibited lower liver iron (P < 0.05) content, lower activities of Cu, Zn superoxide dismutase (CuZnSOD) in breast muscle and liver, and glutathione peroxidase in liver. Glutathione peroxidase reduced linearly (P < 0.05) with CuPro levels and increased linearly (P < 0.05) with CuSO4.5H2O levels and were lower (P < 0.05) in all CuPro levels in breast muscle. Breast muscle malondialdehyde concentration tended to be higher (P = 0.08) in broilers fed CuSO4.5H2O. Copper levels linearly increased (P < 0.05) metallothionein (MT) and malate dehydrogenase (MDH) expression in liver, and six-transmembrane epithelial antigen of the prostate-1 (STEAP-1) in the intestine. Copper elicited a quadratic response (P < 0.050) in AKT-1 and mammalian target of rapamycin (mTOR) in breast muscle, CuZnSOD in liver and antioxidant 1 copper chaperone (ATOX 1) in intestine. Broilers fed CuPro exhibited higher mRNA expression of mTOR in muscle breast and lower CuZnSOD in liver and ATOX 1 in intestine. Interaction (P < 0.05) between levels and sources was found in mRNA expression for GSK-3ß, MT, and CuZnSOD in breast muscle, FAS and LPL in liver and MT and CTR1 in intestine. CONCLUSIONS: CuPro showed beneficial effects on feed conversion and bone mineralization. Organic and inorganic Cu requirements are 9.87 and 8.84 mg Cu/kg, respectively.


Asunto(s)
Pollos , Cobre , Alimentación Animal/análisis , Animales , Antioxidantes/metabolismo , Cobre/metabolismo , Dieta/veterinaria , Suplementos Dietéticos , Glutatión Peroxidasa , Glucógeno Sintasa Quinasa 3 beta , Lípidos , Masculino , Mamíferos , Minerales , ARN Mensajero , Superóxido Dismutasa , Serina-Treonina Quinasas TOR
2.
BMC Vet Res ; 17(1): 151, 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33836766

RESUMEN

BACKGROUND: Selenium (Se) has been recognized as an essential micronutrient for nearly all forms of life. In recent decades, broiler responses to dietary Se supplemental levels and sources have received considerable attention. On environmental grounds, organic trace mineral utilization in practical broiler feeds has been defended due to its higher bioavailability. In such feeds, trace minerals are provided simultaneously in the same supplement as inorganic salts or organic chelates, a fact commonly ignored in assays conducted to validate organic trace mineral sources. The current assay aimed to investigate growth and biochemical responses, as well as Se retention of growing chicks fed diets supplemented with organic and inorganic Se levels and where the trace minerals (zinc, copper, manganese, and iron) were provided as organic chelates or inorganic salts according to Se source assessed. In so doing, a 2 × 5 factorial arrangement was used to investigate the effects of sodium selenite (SS) and selenium-yeast (SY) supplemented in feeds to provide the levels of 0, 0.08, 0.16, 0.24, and 0.32 mg Se/kg. RESULTS: Chicks fed selenium-yeast diets had body weight (BW), and average daily gain (ADG) maximized at 0.133 and 0.130 mg Se/kg, respectively. Both Se sources linearly increased (P < 0.05) the glutathione peroxidase (GSH-Px) activity in chick blood but higher values were observed in sodium selenite fed chicks (P < 0.05). Both Se sources influenced thyroid hormone serum concentrations (P < 0.05). Chicks fed SY exhibited greater retention of Se in the feathers (P < 0.05). Relative bioavailability of selenium yeast compared with SS for the Se content in carcass, feathers, total and Se retention were, 126, 116, 125 and 125%, respectively. SY supplementation resulted in lower liver Se concentration as Se supplementation increased (P < 0.05). CONCLUSIONS: Based on performance traits, the supplemental level of organic Se as SY in organic trace minerals supplement to support the maximal growth of broiler chicks is 0.133 mg Se/kg.


Asunto(s)
Alimentación Animal , Pollos , Dieta/veterinaria , Selenio/farmacología , Oligoelementos/farmacología , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Disponibilidad Biológica , Relación Dosis-Respuesta a Droga , Selenio/administración & dosificación , Selenio/farmacocinética , Oligoelementos/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...