Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Drug Discov Today ; 29(8): 104074, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38950729

RESUMEN

Pathogenic viruses are a profound threat to global public health, underscoring the urgent need for the development of efficacious antiviral therapeutics. The advent of RNA-targeting antiviral strategies has marked a significant paradigm shift in the management of viral infections, offering a potent means of control and potential cure. In this review, we delve into the cutting-edge progress in RNA-targeting antiviral agents, encompassing antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), small and bifunctional molecules. We provide an in-depth examination of their strategic molecular design and elucidate the underlying mechanisms of action that confer their antiviral efficacy. By synthesizing recent findings, we shed light on the innovative potential of RNA-targeting approaches and their pivotal role in advancing the frontiers of antiviral drug discovery.

2.
Curr Neuropharmacol ; 22(7): 1169-1188, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708921

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that causes the death of motor neurons and consequent muscle paralysis. Despite many efforts to address it, current therapy targeting ALS remains limited, increasing the interest in complementary therapies. Over the years, several herbal preparations and medicinal plants have been studied to prevent and treat this disease, which has received remarkable attention due to their blood-brain barrier penetration properties and low toxicity. Thus, this review presents the therapeutic potential of a variety of medicinal herbs and their relationship with ALS and their physiopathological pathways.


Asunto(s)
Esclerosis Amiotrófica Lateral , Productos Biológicos , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Humanos , Productos Biológicos/uso terapéutico , Productos Biológicos/farmacología , Animales , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/farmacología , Plantas Medicinales/química
3.
Food Chem ; 442: 138430, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38241986

RESUMEN

The tyrosinase pathway takes part in the enzymatic process of food browning and is primarily responsible for food spoilage - manifesting itself from a decrease in its nutritional value to a deterioration of taste, which consequently leads to a gradual loss of shelf life. Finding safe and bio-based tyrosinase inhibitors and anti-browning agents may be of great importance in agriculture and food industries. Herein, we showed that Cyrene™ exhibits tyrosinase inhibitory activity (IC50: 268.2 µM), the 1.44 times higher than ascorbic acid (IC50: 386.5 µM). Binding mode studies demonstrated that the carbonyl oxygen of Cyrene™ coordinates with both copper ions. Surprisingly, both hydroxyl groups of Cyrene gem-diol perform a monodentate binding mode with both copper ions, at similar distances. This fact suggests that both compounds could have a similar binding mode and, as consequence, similar biological activities in tyrosinase inhibition assays and anti-browning activities.


Asunto(s)
Cobre , Monofenol Monooxigenasa , Reacción de Maillard , Iones , Inhibidores Enzimáticos/farmacología , Simulación del Acoplamiento Molecular
4.
Curr Protein Pept Sci ; 25(1): 12-26, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37653631

RESUMEN

Glioblastoma multiforme (GBM) is the most common type of cancer that affects the central nervous system (CNS). It currently accounts for about 2% of diagnosed malignant tumors worldwide, with 296,000 new cases reported per year. The first-choice treatment consists of surgical resection, radiotherapy, and adjuvant chemotherapy, which increases patients' survival by 15 months. New clinical and pre-clinical research aims to improve this prognosis by proposing the search for new drugs that effectively eliminate cancer cells, circumventing problems such as resistance to treatment. One of the promising therapeutic strategies in the treatment of GBM is the inhibition of the phosphatidylinositol 3-kinase (PI3K) pathway, which is closely related to the process of tumor carcinogenesis. This review sought to address the main scientific studies of synthetic or natural drug prototypes that target specific therapy co-directed via the PI3K pathway, against human glioblastoma.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología
5.
Fundam Clin Pharmacol ; 38(1): 84-98, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37649138

RESUMEN

BACKGROUND: Thiadiazines are heterocyclic compounds that contain two nitrogen atoms and one sulfur atom in their structure. These synthetic molecules have several relevant pharmacological activities, such as antifungal, antibacterial, and antiparasitic. OBJECTIVES: The present study aimed to evaluate the possible in vitro and in silico interactions of compounds derived from thiadiazines. METHODS: The compounds were initially synthesized, purified, and confirmed through HPLC methodology. Multi-drug resistant bacterial strains of Staphylococcus aureus 10 and Pseudomonas aeruginosa 24 were used to evaluate the direct and modifying antibiotic activity of thiadiazine derivatives. ADMET assays (absorption, distribution, metabolism, excretion, and toxicity) were conducted, which evaluated the influence of the compounds against thousands of macromolecules considered as bioactive targets. RESULTS: There were modifications in the chemical synthesis in carbon 4 or 3 in one of the aromatic rings of the structure where different ions were added, ensuring a variability of products. It was possible to observe results that indicate the possibility of these compounds acting through the cyclooxygenase 2 mechanism, which, in addition to being involved in inflammatory responses, also acts by helping sodium reabsorption. The amine group present in thiadiazine analogs confers hydrophilic characteristics to the substances, but this primary characteristic has been altered due to alterations and insertions of other ligands. The characteristics of the analogs generally allow easy intestinal absorption, reduce possible hepatic toxic effects, and enable possible neurological and anti-inflammatory action. The antibacterial activity tests showed a slight direct action, mainly of the IJ23 analog. Some compounds were able to modify the action of the antibiotics gentamicin and norfloxacin against multi-drug resistant strains, indicating a possible synergistic action. CONCLUSIONS: Among all the results obtained in the study, the relevance of thiadiazine analogs as possible coadjuvant drugs in the antibacterial, anti-inflammatory, and neurological action with low toxicity is clear. Need for further studies to verify these effects in living organisms is not ruled out.


Asunto(s)
Antiinfecciosos , Tiadiazinas , Antibacterianos/farmacología , Tiadiazinas/farmacología , Tiadiazinas/química , Norfloxacino/farmacología , Antiinflamatorios , Pruebas de Sensibilidad Microbiana
8.
Artículo en Inglés | MEDLINE | ID: mdl-38018200

RESUMEN

Neurodegenerative conditions like Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) encompass disorders characterized by the degeneration of neurons in specific circumstances. The quest for novel agents to influence these diseases, particularly AD, has unearthed various natural compounds displaying multifaceted activities and diverse pharmacological mechanisms. Given the ongoing extensive study of pathways associated with the accumulation of neurofibrillary aggregates and amyloid plaques, this paper aims to comprehensively review around 130 studies exploring natural products. These studies focus on inhibiting the formation of amyloid plaques and tau protein tangles, with the objective of potentially alleviating or delaying AD.

9.
Curr Top Med Chem ; 23(30): 2863-2876, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37679877

RESUMEN

Cancer is responsible for high mortality rates worldwide, representing a serious health problem. In this sense, melanoma corresponds to the most aggressive type of skin cancer, being the cause of the highest death rates. Therapeutic strategies for the treatment of melanoma remain limited, with problems associated with toxicity, serious side effects, and mechanisms of resistance. The potential of natural products for the prevention and treatment of melanoma has been reported in different studies. Among these compounds, naphthoquinones (1,2-naphthoquinones and 1,4-naphthoquinones) stand out for their diverse pharmacological properties, including their antitumor activity. Thus, this review covers different studies found in the literature on the application of natural naphthoquinones targeting melanoma, providing information regarding the mechanisms of action investigated for these compounds. Finally, we believe that this review provides a comprehensive basis for the use of natural naphthoquinones against melanoma and that it may contribute to the discovery of promising compounds, specifically naphthoquinones, aimed at the treatment of this cancer.


Asunto(s)
Antineoplásicos , Melanoma , Naftoquinonas , Humanos , Melanoma/tratamiento farmacológico , Antineoplásicos/farmacología , Naftoquinonas/farmacología
11.
Mini Rev Med Chem ; 23(11): 1193-1221, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37424359

RESUMEN

Infections caused by the Hepatitis C virus (HCV) affect around 70 million people worldwide, leading to serious liver problems, such as fibrosis, steatosis, and cirrhosis, in addition to progressing to hepatocellular carcinoma and becoming globally the main cause of liver disease. Despite great therapeutic advances in obtaining pan-genotypic direct-acting antivirals (DAAs), around 5-10% of affected individuals are unable to eliminate the virus by their own immune system's activity. Still, there are no licensed vaccines so far. In this context, the orchestrated process of virus entry into host cells is a crucial step in the life cycle and the infectivity capability of most viruses. In recent years, the entry of viruses has become one of the main druggable targets used for designing effective antiviral molecules. This goal has come to be widely studied to develop pharmacotherapeutic strategies against HCV, combined or not with DAAs in multitarget approaches. Among the inhibitors found in the literature, ITX 5061 corresponds to the most effective one, with EC50 and CC50 values of 0.25 nM and >10 µM (SI: 10,000), respectively. This SRBI antagonist completed the phase I trial, constituting a promising compound against HCV. Interestingly, chlorcyclizine (an antihistamine drug) showed action both in E1 apolipoproteins (EC50 and CC50 values of 0.0331 and 25.1 µM, respectively), as well as in NPC1L1 (IC50 and CC50 values of 2.3 nM and > 15 µM, respectively). Thus, this review will discuss promising inhibitors targeting HCV entry, discussing their SAR analyzes, recent contributions, and advances in this field.


Asunto(s)
Hepatitis C Crónica , Hepatitis C , Neoplasias Hepáticas , Humanos , Hepacivirus , Antivirales/farmacología , Antivirales/uso terapéutico , Hepatitis C Crónica/tratamiento farmacológico , Hepatitis C/tratamiento farmacológico , Internalización del Virus , Neoplasias Hepáticas/tratamiento farmacológico
12.
Curr Alzheimer Res ; 20(3): 131-148, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37309767

RESUMEN

The accumulation of amyloid-ß (Aß) is the main event related to Alzheimer's disease (AD) progression. Over the years, several disease-modulating approaches have been reported, but without clinical success. The amyloid cascade hypothesis evolved and proposed essential targets such as tau protein aggregation and modulation of ß-secretase (ß-site amyloid precursor protein cleaving enzyme 1 - BACE-1) and γ-secretase proteases. BACE-1 cuts the amyloid precursor protein (APP) to release the C99 fragment, giving rise to several Aß peptide species during the subsequent γ-secretase cleavage. In this way, BACE-1 has emerged as a clinically validated and attractive target in medicinal chemistry, as it plays a crucial role in the rate of Aß generation. In this review, we report the main results of candidates in clinical trials such as E2609, MK8931, and AZD-3293, in addition to highlighting the pharmacokinetic and pharmacodynamic-related effects of the inhibitors already reported. The current status of developing new peptidomimetic, non-peptidomimetic, naturally occurring, and other class inhibitors are demonstrated, considering their main limitations and lessons learned. The goal is to provide a broad and complete approach to the subject, exploring new chemical classes and perspectives.


Asunto(s)
Enfermedad de Alzheimer , Secretasas de la Proteína Precursora del Amiloide , Humanos , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Péptidos beta-Amiloides/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico
13.
Naunyn Schmiedebergs Arch Pharmacol ; 396(11): 2957-2975, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37097335

RESUMEN

Trimetozine is used to be indicated for the treatment of mental illnesses, particularly anxiety. The present study provides data on the pharmacological profile of trimetozine derivative morpholine (3,5-di-tert-butyl-4-hydroxyphenyl) methanone (LQFM289) which was designed from molecular hybridization of trimetozine lead compound and 2,6-di-tert-butyl-hydroxytoluene to develop new anxiolytic drugs. Here, we conduct molecular dynamics simulations, docking studies, receptor binding assays, and in silico ADMET profiling of LQFM289 before its behavioral and biochemical assessment in mice within the dose range of 5-20 mg/kg. The docking of LQFM289 showed strong interactions with the benzodiazepine binding sites and matched well with receptor binding data. With the ADMET profile of this trimetozine derivative that predicts a high intestinal absorption and permeability to blood-brain barrier without being inhibited by the permeability glycoprotein, the oral administration of LQFM289 10 mg/kg consistently induced anxiolytic-like behavior of the mice exposed to the open field and light-dark box apparatus without eliciting motor incoordination in the wire, rotarod, and chimney tests. A decrease in the wire and rotarod´s fall latency coupled with an increase in the chimney test´s climbing time and a decrease in the number of crossings in the open field apparatus at the dose of 20 mg/kg of this trimetozine derivative suggest sedative or motor coordination impairment at this highest dose. The attenuation of the anxiolytic-like effects of LQFM289 (10 mg/kg) by flumazenil pretreatment implicates the participation of benzodiazepine binding sites. The lowering of corticosterone and tumor necrosis factor alpha (cytokine) in LQFM289-treated mice at a single oral (acute) dose of 10 mg/kg suggests that the anxiolytic-like effect of this compound also involves the recruitment of non-benzodiazepine binding sites/GABAergic molecular machinery.


Asunto(s)
Ansiolíticos , Ratones , Animales , Ansiolíticos/farmacología , Ansiolíticos/uso terapéutico , Benzodiazepinas/farmacología , Hipnóticos y Sedantes/farmacología , Ansiedad/tratamiento farmacológico , Morfolinas/farmacología , Conducta Animal
14.
Drug Discov Today ; 28(6): 103581, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37030533

RESUMEN

Approved or licensed antiviral drugs have limited applications because of their drug resistance and severe adverse effects. By contrast, by stabilizing or destroying the viral capsid, compounds known as capsid modulators prevent viral replication by acting on new targets and, therefore, overcoming the problem of clinical drug resistance. For example, computer-aided drug design (CADD) methods, using strategies based on structures of biological targets (structure-based drug design; SBDD), such as docking, molecular dynamics (MD) simulations, and virtual screening (VS), have provided opportunities for fast and effective development of viral capsid modulators. In this review, we summarize the application of CADD in the discovery, optimization, and mechanism prediction of capsid-targeting small molecules, providing new insights into antiviral drug discovery modalities.


Asunto(s)
Cápside , Diseño Asistido por Computadora , Diseño de Fármacos , Descubrimiento de Drogas , Antivirales/farmacología , Antivirales/química
15.
Drug Discov Today ; 28(3): 103468, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36528280

RESUMEN

The (re)emergence of multidrug-resistant viruses and the emergence of new viruses highlight the urgent and ongoing need for new antiviral agents. The use of peptidomimetics as therapeutic drugs has often been associated with advantages, such as enhanced binding affinity, improved metabolic stability, and good bioavailability profiles. The development of novel antivirals is currently driven by strategies of converting peptides into peptidomimetic derivatives. In this review, we outline different structural modification design strategies for developing novel peptidomimetics as antivirals, involving N- or C-cap terminal structure modifications, pseudopeptides, amino acid modifications, inverse-peptides, cyclization, and molecular hybridization. We also present successful recent examples of peptidomimetic designs.


Asunto(s)
Peptidomiméticos , Antivirales , Química Farmacéutica , Péptidos/química
16.
Fundam Clin Pharmacol ; 37(3): 619-628, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36579760

RESUMEN

In the present study, we examined the antinociceptive and anti-inflammatory activities of a guanylhydrazone derivative, (E)-(3,5-di-tert-butyl-4-hydroxybenzylidene)-2-guanylhydrazone hydrochloride (LQM10), in mice. The antinociceptive effect was determined by assessing behavioural responses in different pain models, while anti-inflammatory activity was examined in carrageenan-induced pleurisy. Intraperitoneal LQM10 administration reduced the acetic acid-induced nociceptive behaviour, a phenomenon that was unaltered by pretreatment with yohimbine, atropine, naloxone or glibenclamide. In the formalin assay, LQM10 reduced nociceptive behaviour only in the second phase, indicating an inhibitory effect on inflammatory pain. LQM10 did not alter the pain latency in the hot plate assay and did not impact the locomotor activity of mice in the rotarod assay. In the carrageenan-induced pleurisy assay, LQM10 treatment inhibited critical events involved in inflammatory responses, namely, leucocyte recruitment, plasma leakage and increased inflammatory mediators (tumour necrosis factor Like Properties of Chalchones and Flavonoid Derivatives [TNF]-α and interleukin [IL]-1ß) in the pleural exudate. Overall, these results indicate that LQM10 exhibits antinociceptive effects associated with peripheral mechanisms and anti-inflammatory activity mediated via a reduction in leucocyte migration and proinflammatory mediators, rendering this compound a promising candidate for treating pain and inflammatory process.


Asunto(s)
Analgésicos , Pleuresia , Animales , Ratones , Analgésicos/efectos adversos , Carragenina , Nocicepción , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Dolor/tratamiento farmacológico , Extractos Vegetales/farmacología , Pleuresia/inducido químicamente , Pleuresia/tratamiento farmacológico , Factor de Necrosis Tumoral alfa , Edema/inducido químicamente , Edema/tratamiento farmacológico
17.
Mini Rev Med Chem ; 22(22): 2896-2924, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35379146

RESUMEN

Ebola Virus (EBOV) is an infectious disease that mainly affects the cardiovascular system. It belongs to the Filoviridae family, consisting of filamentous envelopes and non-segmented negative RNA genome. EBOV was initially identified in Sudan and Zaire (now named the Democratic Republic of Congo) around 1967. It is transmitted mainly by contact with secretions (blood, sweat, saliva, and tears) from infected wild animals, such as non-human primates and bats. It has gained more prominence in recent years due to the recent EBOV outbreaks that occurred from 2013 to 2016, resulting in approximately 28,000 infected individuals, with a mortality rate of 40- 70%, affecting mainly Liberia, Guinea, and Sierra Leone. Despite these alarming levels, there is still no FDA-approved drug for the effective treatment of these diseases. The most advanced drug to treat EBOV is remdesivir. However, it is a high-cost drug and is available only for intravenous use. In this sense, more investments are needed in the research focused on the development of new antiviral drugs. In this context, medicinal chemistry strategies have been improving and increasingly discovering new hits that can be used in the future as a treatment against these diseases. Thus, this review will address the main advances in medicinal chemistry, such as drug discovery through computational techniques (virtual screening and virtual high throughput screening), drug repurposing, phenotypic screening assays, and employing classical medicinal chemistry, such as bioisosterism, metabolism-based drug design, and the discovery of new inhibitors through natural products, thereby presenting several promising compounds that may contain the advance of these pathogens.


Asunto(s)
Productos Biológicos , Ebolavirus , Fiebre Hemorrágica Ebola , Animales , Ebolavirus/genética , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Fiebre Hemorrágica Ebola/epidemiología , Química Farmacéutica , Descubrimiento de Drogas , Antivirales/farmacología , Antivirales/uso terapéutico , Antivirales/química , Productos Biológicos/farmacología , ARN/farmacología , ARN/uso terapéutico
18.
Curr Top Med Chem ; 22(24): 1983-2028, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35319372

RESUMEN

The discovery of antibiotics was a revolutionary feat that provided countless health benefits. The identification of penicillin by Alexander Fleming initiated the era of antibiotics, represented by constant discoveries that enabled effective treatments for the different classes of diseases caused by bacteria. However, the indiscriminate use of these drugs allowed the emergence of resistance mechanisms of these microorganisms against the available drugs. In addition, the constant discoveries in the 20th century generated a shortage of new molecules, worrying health agencies and professionals about the appearance of multidrug-resistant strains against available drugs. In this context, the advances of recent years in molecular biology and microbiology have allowed new perspectives in drug design and development, using the findings related to the mechanisms of bacterial resistance to generate new drugs that are not affected by such mechanisms and supply new molecules to be used to treat resistant bacterial infections. Besides, a promising strategy against bacterial resistance is the combination of drugs through adjuvants, providing new expectations in designing new antibiotics and new antimicrobial therapies. Thus, this manuscript will address the main mechanisms of bacterial resistance under the understanding of medicinal chemistry, showing the main active compounds against efflux mechanisms, and also the application of the use of drug delivery systems, and finally, the main potential natural products as adjuvants or with promising activity against resistant strains.


Asunto(s)
Infecciones Bacterianas , Química Farmacéutica , Humanos , Bacterias , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Diseño de Fármacos , Farmacorresistencia Bacteriana Múltiple
19.
Curr Med Chem ; 29(33): 5397-5419, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35301943

RESUMEN

Inflammation is a natural reaction to external stimuli to protect the organism. However, if it is exaggerated, it can cause severe physiopathological damage, linked to diseases like rheumatoid arthritis, cancer, diabetes, allergies, and infections. Inflammation is mainly characterized by pain, increased temperature, flushing, and edema, which can be controlled using anti-inflammatory drugs. In this context, prostaglandin E2 (PGE2) inhibition has been targeted for designing new compounds with anti-inflammatory properties. It is a bioactive lipid overproduced during an inflammatory process, in which its increased production is carried out mainly by COX-1, COX-2, and microsomal prostaglandin E2 synthase-1 (mPGES-1). Recently, studies have demonstrated that mPGES-1 inhibition is a safe strategy for developing anti-inflammatory agents, which could protect against pain, acute inflammation, arthritis, autoimmune diseases, and different types of cancers. Thus, in recent years, computer-aided drug design (CADD) approaches have been increasingly used to design new inhibitors, decreasing costs and increasing the probability of discovering active substances. Finally, this review will cover all aspects involving high-throughput virtual screening, molecular docking, dynamics, fragment-based drug design, and quantitative structure-activity relationship in seeking new promising mPGES-1 inhibitors.


Asunto(s)
Antiinflamatorios , Diseño de Fármacos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Dinoprostona/uso terapéutico , Humanos , Inflamación/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Prostaglandina-E Sintasas
20.
Naunyn Schmiedebergs Arch Pharmacol ; 395(3): 275-283, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35089406

RESUMEN

Coronavirus disease 2019 (COVID-19) is a potentially fatal disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that preferentially infects the respiratory tract. Bradykinin (BK) is a hypotensive substance that recently emerged as one of the mechanisms to explain COVID-19-related complications. Concerning this, in this review, we try to address the complex link between BK and pathophysiology of COVID-19, investigating the role of this peptide as a potential target for pharmacological modulation in the management of SARS-CoV-2. The pathology of COVID-19 may be more a result of the BK storm than the cytokine storm, and which BK imbalance is a relevant factor in the respiratory disorders caused by SARS-CoV-2 infection. Regarding this, an interesting point of intervention for this disease is to modulate BK signaling. Some drugs, such as icatibant, ecallantide, and noscapine, and even a human monoclonal antibody, lanadelumab, have been studied for their potential utility in COVID-19 by modulating BK signaling. The interaction of the BK pathway and the involvement of cytokines such as IL-6 and IL1 may be key to the use of blockers, even if only as adjuvants. In fact, reduction of BK, mainly DABK, is considered a relevant strategy to improve clinical conditions of COVID-19 patients. In this context, despite the current unproven clinical efficacy, drugs repurposing that block B1 or B2 receptor activation have gained prominence for the treatment of COVID-19 in the world.


Asunto(s)
Bradiquinina/antagonistas & inhibidores , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2/efectos de los fármacos , Bradiquinina/fisiología , COVID-19/etiología , Reposicionamiento de Medicamentos , Humanos , Interleucina-6/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA