Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Neuroinflammation ; 20(1): 61, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36882750

RESUMEN

Zika virus (ZIKV) infection is a global public health concern linked to adult neurological disorders and congenital diseases in newborns. Host lipid metabolism, including lipid droplet (LD) biogenesis, has been associated with viral replication and pathogenesis of different viruses. However, the mechanisms of LD formation and their roles in ZIKV infection in neural cells are still unclear. Here, we demonstrate that ZIKV regulates the expression of pathways associated with lipid metabolism, including the upregulation and activation of lipogenesis-associated transcription factors and decreased expression of lipolysis-associated proteins, leading to significant LD accumulation in human neuroblastoma SH-SY5Y cells and in neural stem cells (NSCs). Pharmacological inhibition of DGAT-1 decreased LD accumulation and ZIKV replication in vitro in human cells and in an in vivo mouse model of infection. In accordance with the role of LDs in the regulation of inflammation and innate immunity, we show that blocking LD formation has major roles in inflammatory cytokine production in the brain. Moreover, we observed that inhibition of DGAT-1 inhibited the weight loss and mortality induced by ZIKV infection in vivo. Our results reveal that LD biogenesis triggered by ZIKV infection is a crucial step for ZIKV replication and pathogenesis in neural cells. Therefore, targeting lipid metabolism and LD biogenesis may represent potential strategies for anti-ZIKV treatment development.


Asunto(s)
Neuroblastoma , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Ratones , Gotas Lipídicas , Replicación Viral
3.
Front Immunol ; 13: 820131, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35251001

RESUMEN

Coronavirus disease 2019 (COVID-19) is currently a worldwide emergency caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). In observational clinical studies, statins have been identified as beneficial to hospitalized patients with COVID-19. However, experimental evidence of underlying statins protection against SARS-CoV-2 remains elusive. Here we reported for the first-time experimental evidence of the protective effects of simvastatin treatment both in vitro and in vivo. We found that treatment with simvastatin significantly reduced the viral replication and lung damage in vivo, delaying SARS-CoV-2-associated physiopathology and mortality in the K18-hACE2-transgenic mice model. Moreover, simvastatin also downregulated the inflammation triggered by SARS-CoV-2 infection in pulmonary tissue and in human neutrophils, peripheral blood monocytes, and lung epithelial Calu-3 cells in vitro, showing its potential to modulate the inflammatory response both at the site of infection and systemically. Additionally, we also observed that simvastatin affected the course of SARS-CoV-2 infection through displacing ACE2 on cell membrane lipid rafts. In conclusion, our results show that simvastatin exhibits early protective effects on SARS-CoV-2 infection by inhibiting virus cell entry and inflammatory cytokine production, through mechanisms at least in part dependent on lipid rafts disruption.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Regulación hacia Abajo/efectos de los fármacos , Inflamación/tratamiento farmacológico , Microdominios de Membrana/efectos de los fármacos , SARS-CoV-2/patogenicidad , Simvastatina/farmacología , Animales , COVID-19/virología , Modelos Animales de Enfermedad , Humanos , Inflamación/virología , Pulmón/virología , Ratones , Ratones Transgénicos , Replicación Viral/efectos de los fármacos
4.
Cell Cycle ; 12(14): 2248-54, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24067367

RESUMEN

Caveolar domains act as platforms for the organization of molecular complexes involved in signal transduction. Caveolin proteins, the principal structural components of caveolae, have been involved in many cellular processes. Caveolin-1 (Cav-1) and caveolin-2 (Cav-2) are highly expressed in the lung. Cav-1-deficient mice (Cav-1(-/-)) and Cav-2-deficient mice (Cav-2(-/-)) exhibit severe lung dysfunction attributed to a lack of Cav-2 expression. Recently, Cav-1 has been shown to regulate lung fibrosis in different models. Here, we show that Cav-2 is also involved in modulation of the fibrotic response, but through distinct mechanisms. Treatment of wild-type mice with the pulmonary fibrosis-inducer bleomycin reduced the expression of Cav-2 and its phosphorylation at tyrosine 19. Importantly, Cav-2(-/-) mice, but not Cav-1(-/-) mice, were more sensitive to bleomycin-induced lung injury in comparison to wild-type mice. Bleomycin-induced lung injury was characterized by alveolar thickening, increase in cell density, and extracellular matrix deposition. The lung injury observed in bleomycin-treated Cav-2(-/-) mice was not associated with alterations in the TGF-ß signaling pathway and/or in the ability to produce collagen. However, apoptosis and proliferation were more prominent in lungs of bleomycin-treated Cav-2(-/-) mice. Since Cav-1(-/-) mice also lack Cav-2 expression and show a different outcome after bleomycin treatment, we conclude that Cav-1 and Cav-2 have distinct roles in bleomycin induced-lung fibrosis, and that the balance of both proteins determines the development of the fibrotic process.


Asunto(s)
Lesión Pulmonar Aguda/genética , Caveolina 1/genética , Caveolina 2/genética , Regulación de la Expresión Génica , Fibrosis Pulmonar/genética , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Animales , Apoptosis/efectos de los fármacos , Bleomicina , Caveolina 1/deficiencia , Caveolina 2/deficiencia , Supervivencia Celular/efectos de los fármacos , Colágeno/genética , Colágeno/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones , Ratones Noqueados , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Transducción de Señal , Factor de Crecimiento Transformador beta/farmacología
5.
J Biol Chem ; 280(25): 24085-94, 2005 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-15843370

RESUMEN

Adipose tissue plays an active role in normal metabolic homeostasis as well as in the development of human disease. Beyond its obvious role as a depot for triglycerides, adipose tissue controls energy expenditure through secretion of several factors. Little attention has been given to the role of adipocytes in the pathogenesis of Chagas disease and the associated metabolic alterations. Our previous studies have indicated that hyperglycemia significantly increases parasitemia and mortality in mice infected with Trypanosoma cruzi. We determined the consequences of adipocyte infection in vitro and in vivo. Cultured 3T3-L1 adipocytes can be infected with high efficiency. Electron micrographs of infected cells revealed a large number of intracellular parasites that cluster around lipid droplets. Furthermore, infected adipocytes exhibited changes in expression levels of a number of different adipocyte-specific or adipocyte-enriched proteins. The adipocyte is therefore an important target cell during acute Chagas disease. Infection of adipocytes by T. cruzi profoundly influences the pattern of adipokines. During chronic infection, adipocytes may represent an important long-term reservoir for parasites from which relapse of infection can occur. We have demonstrated that acute infection has a unique metabolic profile with a high degree of local inflammation in adipose tissue, hypoadiponectinemia, hypoglycemia, and hypoinsulinemia but with relatively normal glucose disposal during an oral glucose tolerance test.


Asunto(s)
Adipocitos/metabolismo , Trypanosoma cruzi/patogenicidad , Tripanosomiasis/patología , Células 3T3-L1 , Adipocitos/parasitología , Animales , Secuencia de Bases , Western Blotting , Cartilla de ADN , Hipoglucemia/complicaciones , Inmunohistoquímica , Ratones , Microscopía Electrónica de Rastreo , Tripanosomiasis/complicaciones , Tripanosomiasis/parasitología
6.
J Leukoc Biol ; 77(2): 238-46, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15539455

RESUMEN

The cellular prion protein (PrPc) is a glycoprotein anchored by glycosylphosphatidylinositol (GPI) to the cell surface and is abundantly expressed in the central nervous system. It is also expressed in a variety of cell types of the immune system. We investigated the role of PrPc in the phagocytosis of apoptotic cells and other particles. Macrophages from mice with deletion of the Prnp gene showed higher rates of phagocytosis than wild-type macrophages in in vitro assays. The elimination of GPI-anchored proteins from the cell surface of macrophages from wild-type mice rendered these cells as efficient as macrophages derived from knockout mice. In situ detection of phagocytosis of apoptotic bodies within the retina indicated augmented phagocytotic activity in knockout mice. In an in vivo assay of acute peritonitis, knockout mice showed more efficient phagocytosis of zymosan particles than wild-type mice. In addition, leukocyte recruitment was altered in knockout mice, as compared with wild type. The data show that PrPc modulates phagocytosis in vitro and in vivo. This activity is described for the first time and may be important for normal macrophage functions as well as for the pathogenesis of prion diseases.


Asunto(s)
Inflamación/metabolismo , Fagocitosis/fisiología , Proteínas PrPC/fisiología , Animales , Apoptosis/genética , Apoptosis/inmunología , Apoptosis/fisiología , Inflamación/inmunología , Leucocitos/fisiología , Macrófagos/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fagocitosis/genética , Fagocitosis/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...