Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurogastroenterol Motil ; 32(2): e13745, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31721393

RESUMEN

BACKGROUND: Obesity has been linked to gastrointestinal disorders, and the loss of myenteric neurons in the intestine caused by high-fat diets (HFD) has been attributed to changes in microbiota and lipotoxicity. We investigated whether the prebiotic inulin modulates bacterial populations and alleviates neuronal loss in mice fed HFD. METHODS: Swiss mice were fed purified rodent diet or HFD (59% kcal fat), or both diets supplemented with inulin for 17 weeks. Intestinal motility was assessed and a metagenome analysis of the colonic microbiota was performed. The gene expression of inflammatory markers was evaluated, and immunofluorescence was performed for different types of myenteric neurons and glial cells in the distal colon. KEY RESULTS: The HFD caused obesity and delayed colonic motility. The loss of myenteric neurons and glial cells in obese mice affected all of the studied neuronal populations, including neurons positive for myosin-V, neuronal nitric oxide synthase, vasoactive intestinal peptide, and calretinin. Although obese mice supplemented with inulin exhibited improvements in colonic motility, neuronal, and glial cell loss persisted. The HFD did not altered the expression levels of inflammatory cytokines in the intestine or the prevalence of the major groups in microbiota, but inulin increased the proportion of the genus Akkermansia in the obese mice. CONCLUSIONS AND INFERENCES: In Swiss mice, the HFD-induced neuronal loss but did not change the major groups in microbiota. This suggests that, despite the increase in the beneficial bacteria, other factors that are directly linked to excess dietary lipid intake affect the enteric nervous system.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Microbioma Gastrointestinal , Plexo Mientérico/patología , Neuronas/patología , Obesidad/patología , Animales , Motilidad Gastrointestinal/fisiología , Inulina/farmacología , Masculino , Ratones , Obesidad/etiología , Probióticos/farmacología
2.
Nutr Metab (Lond) ; 16: 65, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31528184

RESUMEN

BACKGROUND: A combination of resistance training and whey protein supplementation is a common practice among athletes and recreational exercisers to enhance muscle growth and strength. Although their safety as food additives is controversial, artificial sweeteners are present in whey protein supplements. Thus, natural sweeteners extracted from the leaves of Stevia rebaudiana are a potential alternative, due to their safety and health benefits. Here, we investigated the effects of whey protein sweetened with S. rebaudiana on physical performance and mitochondrial biogenesis markers in the skeletal muscle of resistance-trained rats. METHODS: Forty male Wistar rats were distributed into four groups: sedentary rats, trained rats, trained rats receiving whey protein and trained rats receiving whey protein sweetened with S. rebaudiana leaf extracts. Resistance training was performed by climbing a ladder 5 days per week, during 8-weeks. The training sessions consisted of four climbs carrying a load of 50, 75, 90, and 100% of the maximum load-carrying capacity which we determined before by performing a maximum load-carrying test for each animal. After this period, we collected plasma and tissues samples to evaluate biochemical, histological and molecular (western blot) parameters in these rats. RESULTS: Dietary supplementation with whey protein sweetened with S. rebaudiana significantly enhanced the maximum load-carrying capacity of resistance-trained rats, compared with non-sweetened whey protein supplementation. This enhanced physical performance was accompanied by an increase in the weight of the gastrocnemius and soleus muscle pads. Although the muscle pad of the biceps brachii was not altered, we observed a significant increase in PGC-1α expression, which was followed by a similar pattern in TFAM protein expression, two important mitochondrial biogenesis markers. In addition, a higher level of AMPK phosphorylation was observed in these resistance-trained rats. Finally, supplementation with whey protein sweetened with S. rebaudiana also induced a significant decrease in retroperitoneal adipocyte diameter and an increase in the weight of brown adipose tissue pads in resistance-trained rats. CONCLUSION: The addition of Stevia rebaudiana leaf extracts to whey protein appears to be a potential strategy for those who want to increase muscular mass and strength and also improve mitochondrial function. This strategy may be useful for both athletes and patients with metabolic disorders, such as obesity and type 2 diabetes.

3.
Cell Biol Int ; 41(11): 1214-1222, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28493523

RESUMEN

Benign prostatic hyperplasia (BPH) is the most common cause of lower urinary tract symptoms (LUTS) in older men. In this regard, recent studies have attempted to define the relationships between prostatic fibrosis, LUTS, and increased expression of transforming growth factor ß1 (TGF ß1) in BHP. Therapeutic approaches for BPH such as 5-α-reductase inhibitors and alpha-adrenergic blocking agents increase TGF ß1 expression in the prostatic tissue. Here, we investigated the effects of the 5-α-reductase inhibitor-finasteride-on rat ventral prostate tissue, especially with regard to the tissue distribution and gene expression of fibrillar collagens. Adult Wistar rats (n = 15) were treated with finasteride (25 mg/kg/day) by subcutaneous injection for 7 and 30 days. Age-matched, vehicle-treated (n = 15) adult Wistar rats were used as control. Finasteride treatment reduced prostate size and increased the area of types I and III collagen fibers in the prostatic stroma. As expected, TGF ß1 mRNA expression was upregulated by finasteride treatment. However, COL1A1 and COL3A1 mRNA expressions decreased after both 7 and 30 days of finasteride treatment, suggesting that finasteride treatment promotes prostate parenchyma and stroma changes, which lead to the observed types I and III collagen remodeling without de novo collagen synthesis. The upregulation of TGF ß1 mRNA and protein associated with the 5-α-reductase inhibitor is more closely related to epithelial and stromal cell death pathways than to prostatic fibrosis.


Asunto(s)
Colágenos Fibrilares/genética , Finasterida/farmacología , Próstata/efectos de los fármacos , Factor de Crecimiento Transformador beta1/biosíntesis , Animales , Colágenos Fibrilares/biosíntesis , Expresión Génica/efectos de los fármacos , Masculino , Próstata/metabolismo , Próstata/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Activación Transcripcional/efectos de los fármacos , Factor de Crecimiento Transformador beta1/genética , Regulación hacia Arriba/efectos de los fármacos
4.
Exp Physiol ; 101(8): 1075-85, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27219629

RESUMEN

NEW FINDINGS: What is the central question of this study? We investigated the effects of physical training on phenotypic (fibre-type content) and myogenic features (MyoD and myogenin expression) in skeletal muscle during the transition from cardiac hypertrophy to heart failure. What is the main finding and its importance? We provide new insight into skeletal muscle adaptations by showing that physical training increases the type I fibre content during the transition from cardiac hypertrophy to heart failure, without altering MyoD and myogenin expression. These results have important clinical implications for patients with heart failure, because this population has reduced muscle oxidative capacity. The purpose of this study was to investigate the effects of physical training (PT) on phenotypic features (fibre-type content) and myogenic regulatory factors (MyoD and myogenin) in rat skeletal muscle during the transition from cardiac hypertrophy to heart failure. We used the model of ascending aortic stenosis (AS) to induce heart failure in male Wistar rats. Sham-operated animals were used as age-matched controls. At 18 weeks after surgery, rats with ventricular dysfunction were randomized into the following four groups: sham-operated, untrained (Sham-U; n = 8); sham-operated, trained (Sham-T; n = 6); aortic stenosis, untrained (AS-U; n = 6); and aortic stenosis, trained (AS-T; n = 8). The AS-T and Sham-T groups were submitted to a 10 week aerobic PT programme, while the AS-U and Sham-U groups remained untrained for the same period of time. After the PT programme, the animals were killed and the soleus muscles collected for phenotypic and molecular analyses. Physical training promoted type IIa-to-I fibre conversion in the trained groups (Sham-T and AS-T) compared with the untrained groups (Sham-U and AS-U). No significant (P > 0.05) differences were found in type I or IIa fibre content in the AS-U group compared with the Sham-U group. Additionally, there were no significant (P > 0.05) differences in the myogenic regulatory factors MyoD and myogenin (gene and protein) expression between the groups. Therefore, our results indicate that PT may be a suitable strategy to improve the oxidative phenotype in skeletal muscle during the transition from cardiac hypertrophy to heart failure, without altering MyoD and myogenin.


Asunto(s)
Cardiomegalia/metabolismo , Cardiomegalia/patología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Proteína MioD/metabolismo , Miogenina/metabolismo , Condicionamiento Físico Animal/fisiología , Animales , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Oxidación-Reducción , Ratas , Ratas Wistar
5.
Artículo en Inglés | MEDLINE | ID: mdl-24365169

RESUMEN

Pacu (Piaractus mesopotamicus) is a fast-growing fish that is extensively used in Brazilian aquaculture programs and shows a wide range of thermal tolerance. Because temperature is an environmental factor that influences the growth rate of fish and is directly related to muscle plasticity and growth, we hypothesized that different rearing temperatures in juvenile pacu, which exhibits intense muscle growth by hyperplasia, can potentially alter the muscle growth patterns of this species. The aim of this study was to analyze the muscle growth characteristics together with the expression of the myogenic regulatory factors MyoD and myogenin and the growth factor myostatin in juvenile pacu that were submitted to different rearing temperatures. Juvenile fish (1.5 g weight) were distributed in tanks containing water and maintained at 24°C (G24), 28 °C (G28) and 32 °C (G32) (three replicates for each group) for 60 days. At days 30 and 60, the fish were anesthetized and euthanized, and muscle samples (n=12) were collected for morphological, morphometric and gene expression analyses. At day 30, the body weight and standard length were lower for G24 than for G28 and G32. Muscle fiber frequency in the <25 µm class was significantly higher in G24, and the >50 µm class was lower in G24. MyoD gene expression was higher in G24 compared with that in G28 and G32, and myogenin and myostatin mRNA levels were higher in G24 than G28. At day 60, the body weight and the standard length were higher in G32 but lower in G24. The frequency distribution of the <25 µm diameter muscle fibers was higher in G24, and that of the >50 µm class was lower in G24. MyoD mRNA levels were higher in G24 and G32, and myogenin mRNA levels were similar between G24 and G28 and between G24 and G32 but were higher in G28 compared to G32. The myostatin mRNA levels were similar between the studied temperatures. In light of our results, we conclude that low rearing temperature altered the expression of muscle growth-related genes and induced a delay in muscle growth in juvenile pacu (P. mesopotamicus). Our study provides a clear example of thermally induced phenotypic plasticity in pacu fish and shows that changing the rearing temperature during the juvenile stage can have a considerable effect on gene expression and muscle growth in this species.


Asunto(s)
Characiformes/genética , Calor , Músculos/metabolismo , Animales , Characiformes/crecimiento & desarrollo , Expresión Génica , Desarrollo de Músculos , Proteína MioD/genética , Proteína MioD/metabolismo , Miogenina/genética , Miogenina/metabolismo , Miostatina/genética , Miostatina/metabolismo
6.
Comp Biochem Physiol B Biochem Mol Biol ; 164(4): 268-74, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23416085

RESUMEN

Muscle growth mechanisms are controlled by molecular pathways that can be affected by fasting and refeeding. In this study, we hypothesized that short period of fasting followed by refeeding would change the expression of muscle growth-related genes in juvenile Nile tilapia (Oreochromis niloticus). The aim of this study was to analyze the expression of MyoD, myogenin and myostatin and the muscle growth characteristics in the white muscle of juvenile Nile tilapia during short period of fasting followed by refeeding. Juvenile fish were divided into three groups: (FC) control, feeding continuously for 42 days, (F5) 5 days of fasting and 37 days of refeeding, and (F10) 10 days of fasting and 32 days of refeeding. At days 5 (D5), 10 (D10), 20 (D20) and 42 (D42), fish (n=14 per group) were anesthetized and euthanized for morphological, morphometric and gene expression analyses. During the refeeding, fasted fish gained weight continuously and, at the end of the experiment (D42), F5 showed total compensatory mass gain. After 5 and 10 days of fasting, a significant increase in the muscle fiber frequency (class 20) occurred in F5 and F10 compared to FC that showed a high muscle fiber frequency in class 40. At D42, the muscle fiber frequency in class 20 was higher in F5. After 5 days of fasting, MyoD and myogenin gene expressions were lower and myostatin expression levels were higher in F5 and F10 compared to FC; at D42, MyoD, myogenin and myostatin gene expression was similar among all groups. In conclusion, this study showed that short periods of fasting promoted muscle fiber atrophy in the juvenile Nile tilapia and the refeeding caused compensatory mass gain and changed the expression of muscle growth-related genes that promote muscle growth. These fasting and refeeding protocols have proven useful for understanding the effects of alternative warm fish feeding strategies on muscle growth-related genes.


Asunto(s)
Cíclidos/metabolismo , Músculo Esquelético/metabolismo , Animales , Peso Corporal , Cíclidos/genética , Cíclidos/crecimiento & desarrollo , Ayuno/metabolismo , Expresión Génica , Músculo Esquelético/crecimiento & desarrollo , Proteína MioD/metabolismo , Miogenina/metabolismo , Miostatina/metabolismo , ARN Mensajero/metabolismo
7.
Micron ; 41(8): 997-1004, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20674377

RESUMEN

Skeletal muscle growth is regulated by differential expression of myogenic regulatory factors (MRFs). We evaluated hyperplasia, hypertrophy and quantitative expression of MRFs MyoD and myogenin in 45, 90, 180, and 400 days post-hatching (dph) and adult pacu (Piaractus mesopotamicus) skeletal muscle. Transverse sections of white dorsal muscles were obtained to evaluate hypertrophy and hyperplasia. MyoD and myogenin gene expression was determined by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR). Pacu skeletal muscle had similar morphology at all stages. The highest and the lowest frequencies of fiber diameters <20 µm were found at the 45 dph and adult stages, respectively. Their frequency was similar in the 90, 180, and 400 dph stages. The highest percentage of >50 µm diameter fibers were found in 180 and 400 dph, and adult fish. Hyperplasia was the main mechanism observed in pacu skeletal muscle growth at 45dph; this declined through 90, 180, and 400 dph and remained low in adult fish; the latter presented hypertrophy as the main mechanism responsible for skeletal muscle growth. The high frequencies of 20-50 µm diameter fibers at 90, 180, and 400 dph can be related to intense hypertrophy. The mRNA levels for MyoD and myogenin were similar in 45, 90, and 400 dph and adult fish, peaking at 180 dph. The high MyoD expression at 180 dph can be related to intense myoblast proliferation and hyperplasia, while high myogenin expression can be related to intense myoblast differentiation and fusion during hypertrophy. MyoD and myogenin expression patterns in adults can respectively be associated with myoblast proliferation and differentiation, which both contribute to hypertrophy. Differential MyoD and myogenin expression in pacu white muscle probably is associated with differences in growth patterns during the stages analyzed. In this study, the 180 dph pacu could represent an interesting phase to investigate suitable strategies in commercial fish production focusing on skeletal muscle growth improvement to raise healthy, fast-growing fish.


Asunto(s)
Peces/fisiología , Regulación de la Expresión Génica , Músculo Esquelético/fisiología , Proteína MioD/biosíntesis , Miogenina/biosíntesis , Animales , Peces/genética , Peces/crecimiento & desarrollo , Perfilación de la Expresión Génica , Hipertrofia , Músculo Esquelético/crecimiento & desarrollo , Proteína MioD/genética , Miogenina/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
8.
Micron ; 39(8): 1306-11, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18400505

RESUMEN

Skeletal muscle is the edible part of the fish. It grows by hypertrophy and hyperplasia, events regulated by differential expression of myogenic regulatory factors (MRFs). The study of muscle growth mechanisms in fish is very important in fish farming development. Pacu (Piaractus mesopotamicus) is one of the most important food species farmed in Brazil and has been extensively used in Brazilian aquaculture programs. The aim of this study was to analyze hyperplasia and hypertrophy and the MRF MyoD expression pattern in skeletal muscle of pacu (P. mesopotamicus) during juvenile and adult growth stages. Juvenile (n=5) and adult (n=5) fish were anaesthetized, sacrificed, and weight (g) and total length (cm) determined. White dorsal region muscle samples were collected and immersed in liquid nitrogen. Transverse sections (10 microm thick) were stained with Haematoxilin-Eosin (HE) for morphological and morphometric analysis. Smallest fiber diameter from 100 muscle fibers per animal was calculated in each growth phase. These fibers were grouped into three classes (<20, 20-50, and >50 microm) to evaluate hypertrophy and hyperplasia in white skeletal muscle. MyoD gene expression was determined by semi-quantitative RT-PCR. PCR products were cloned and sequenced. Juvenile and adult pacu skeletal muscle had similar morphology. The large number of <20 microm diameter muscle fibers observed in juvenile fish confirms active hyperplasia. In adult fish, most fibers were over 50 microm diameter and denote more intense muscle fiber hypertrophy. The MyoD mRNA level in juveniles was higher than in adults. A consensus partial sequence for MyoD gene (338 base pairs) was obtained. The Pacu MyoD nucleotide sequence displayed high similarity among several vertebrates, including teleosts. The differential MyoD gene expression observed in pacu white muscle is possibly related to differences in growth patterns during the phases analyzed, with hyperplasia predominant in juveniles and hypertrophy in adult fish. These results should provide a foundation for understanding the molecular control of skeletal muscle growth in economically important Brazilian species, with a view to improving production quality.


Asunto(s)
Peces/metabolismo , Músculo Esquelético/metabolismo , Proteína MioD/genética , Animales , Secuencia de Bases , ADN Complementario/química , Peces/crecimiento & desarrollo , Datos de Secuencia Molecular , ARN Mensajero/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...