Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 629(8011): 417-425, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38658748

RESUMEN

Cancer-specific TCF1+ stem-like CD8+ T cells can drive protective anticancer immunity through expansion and effector cell differentiation1-4; however, this response is dysfunctional in tumours. Current cancer immunotherapies2,5-9 can promote anticancer responses through TCF1+ stem-like CD8+ T cells in some but not all patients. This variation points towards currently ill-defined mechanisms that limit TCF1+CD8+ T cell-mediated anticancer immunity. Here we demonstrate that tumour-derived prostaglandin E2 (PGE2) restricts the proliferative expansion and effector differentiation of TCF1+CD8+ T cells within tumours, which promotes cancer immune escape. PGE2 does not affect the priming of TCF1+CD8+ T cells in draining lymph nodes. PGE2 acts through EP2 and EP4 (EP2/EP4) receptor signalling in CD8+ T cells to limit the intratumoural generation of early and late effector T cell populations that originate from TCF1+ tumour-infiltrating CD8+ T lymphocytes (TILs). Ablation of EP2/EP4 signalling in cancer-specific CD8+ T cells rescues their expansion and effector differentiation within tumours and leads to tumour elimination in multiple mouse cancer models. Mechanistically, suppression of the interleukin-2 (IL-2) signalling pathway underlies the PGE2-mediated inhibition of TCF1+ TIL responses. Altogether, we uncover a key mechanism that restricts the IL-2 responsiveness of TCF1+ TILs and prevents anticancer T cell responses that originate from these cells. This study identifies the PGE2-EP2/EP4 axis as a molecular target to restore IL-2 responsiveness in anticancer TILs to achieve cancer immune control.


Asunto(s)
Linfocitos T CD8-positivos , Proliferación Celular , Dinoprostona , Linfocitos Infiltrantes de Tumor , Neoplasias , Células Madre , Escape del Tumor , Animales , Femenino , Humanos , Masculino , Ratones , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Dinoprostona/metabolismo , Modelos Animales de Enfermedad , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Interleucina-2 , Ganglios Linfáticos/citología , Ganglios Linfáticos/inmunología , Linfocitos Infiltrantes de Tumor/citología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Ratones Endogámicos C57BL , Neoplasias/inmunología , Neoplasias/prevención & control , Subtipo EP2 de Receptores de Prostaglandina E/deficiencia , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E/deficiencia , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Transducción de Señal , Células Madre/citología , Células Madre/inmunología , Células Madre/metabolismo , Escape del Tumor/inmunología
2.
Cancer Cell ; 41(8): 1498-1515.e10, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37451271

RESUMEN

Type 1 conventional dendritic cells (cDC1) can support T cell responses within tumors but whether this determines protective versus ineffective anti-cancer immunity is poorly understood. Here, we use imaging-based deep learning to identify intratumoral cDC1-CD8+ T cell clustering as a unique feature of protective anti-cancer immunity. These clusters form selectively in stromal tumor regions and constitute niches in which cDC1 activate TCF1+ stem-like CD8+ T cells. We identify a distinct population of immunostimulatory CCR7neg cDC1 that produce CXCL9 to promote cluster formation and cross-present tumor antigens within these niches, which is required for intratumoral CD8+ T cell differentiation and expansion and promotes cancer immune control. Similarly, in human cancers, CCR7neg cDC1 interact with CD8+ T cells in clusters and are associated with patient survival. Our findings reveal an intratumoral phase of the anti-cancer T cell response orchestrated by tumor-residing cDC1 that determines protective versus ineffective immunity and could be exploited for cancer therapy.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Humanos , Receptores CCR7/metabolismo , Neoplasias/terapia , Antígenos de Neoplasias , Células Dendríticas
3.
Nat Immunol ; 24(3): 501-515, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36797499

RESUMEN

Blocking pyrimidine de novo synthesis by inhibiting dihydroorotate dehydrogenase is used to treat autoimmunity and prevent expansion of rapidly dividing cell populations including activated T cells. Here we show memory T cell precursors are resistant to pyrimidine starvation. Although the treatment effectively blocked effector T cells, the number, function and transcriptional profile of memory T cells and their precursors were unaffected. This effect occurred in a narrow time window in the early T cell expansion phase when developing effector, but not memory precursor, T cells are vulnerable to pyrimidine starvation. This vulnerability stems from a higher proliferative rate of early effector T cells as well as lower pyrimidine synthesis capacity when compared with memory precursors. This differential sensitivity is a drug-targetable checkpoint that efficiently diminishes effector T cells without affecting the memory compartment. This cell fate checkpoint might therefore lead to new methods to safely manipulate effector T cell responses.


Asunto(s)
Pirimidinas , Ciclo Celular , Diferenciación Celular
4.
Sci Immunol ; 7(67): eabe2634, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35089814

RESUMEN

Tissue-resident memory T cells (TRM) have recently emerged as crucial cellular players for host defense in a wide variety of tissues and barrier sites. Insights into the maintenance and regulatory checkpoints of human TRM cells remain scarce, especially due to the difficulties associated with tracking T cells through time and space in humans. We therefore sought to identify and characterize skin-resident T cells in humans defined by their long-term in situ lodgment. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) preceded by myeloablative chemotherapy unmasked long-term sequestration of host T cell subsets in human skin despite complete donor T cell chimerism in the blood. Single-cell chimerism analysis paired with single-cell transcriptional profiling comprehensively characterized these bona fide long-term skin-resident T cells and revealed differential tissue maintenance for distinct T cell subsets, specific TRM cell markers such as galectin-3, but also tissue exit potential with retention of the transcriptomic TRM cell identity. Analysis of 26 allo-HSCT patients revealed profound interindividual variation in the tissue maintenance of host skin T cells. The long-term persistence of host skin T cells in a subset of these patients did not correlate with the development of chronic GvHD. Our data exemplify the power of exploiting a clinical situation as a proof of concept for the existence of bona fide human skin TRM cells and reveal long-term persistence of host T cells in a peripheral tissue but not in the circulation or bone marrow in a subset of allo-HSCT patients.


Asunto(s)
Enfermedad Injerto contra Huésped/inmunología , Trasplante de Células Madre Hematopoyéticas , Piel/inmunología , Linfocitos T/inmunología , Femenino , Humanos , Masculino , Acondicionamiento Pretrasplante
5.
J Clin Invest ; 130(9): 4587-4600, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32484796

RESUMEN

Th cells integrate signals from their microenvironment to acquire distinct specialization programs for efficient clearance of diverse pathogens or for immunotolerance. Ionic signals have recently been demonstrated to affect T cell polarization and function. Sodium chloride (NaCl) was proposed to accumulate in peripheral tissues upon dietary intake and to promote autoimmunity via the Th17 cell axis. Here, we demonstrate that high-NaCl conditions induced a stable, pathogen-specific, antiinflammatory Th17 cell fate in human T cells in vitro. The p38/MAPK pathway, involving NFAT5 and SGK1, regulated FoxP3 and IL-17A expression in high-NaCl conditions. The NaCl-induced acquisition of an antiinflammatory Th17 cell fate was confirmed in vivo in an experimental autoimmune encephalomyelitis (EAE) mouse model, which demonstrated strongly reduced disease symptoms upon transfer of T cells polarized in high-NaCl conditions. However, NaCl was coopted to promote murine and human Th17 cell pathogenicity, if T cell stimulation occurred in a proinflammatory and TGF-ß-low cytokine microenvironment. Taken together, our findings reveal a context-dependent, dichotomous role for NaCl in shaping Th17 cell pathogenicity. NaCl might therefore prove beneficial for the treatment of chronic inflammatory diseases in combination with cytokine-blocking drugs.


Asunto(s)
Microambiente Celular/efectos de los fármacos , Citocinas/inmunología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Cloruro de Sodio Dietético/farmacología , Células Th17/inmunología , Animales , Microambiente Celular/inmunología , Citocinas/genética , Humanos , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Sistema de Señalización de MAP Quinasas/genética , Sistema de Señalización de MAP Quinasas/inmunología , Ratones , Ratones Transgénicos , Células Th17/patología
6.
Front Immunol ; 10: 1515, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31354705

RESUMEN

Recent advances in cytometry have radically altered the fate of single-cell proteomics by allowing a more accurate understanding of complex biological systems. Mass cytometry (CyTOF) provides simultaneous single-cell measurements that are crucial to understand cellular heterogeneity and identify novel cellular subsets. High-dimensional CyTOF data were traditionally analyzed by gating on bivariate dot plots, which are not only laborious given the quadratic increase of complexity with dimension but are also biased through manual gating. This review aims to discuss the impact of new analysis techniques for in-depths insights into the dynamics of immune regulation obtained from static snapshot data and to provide tools to immunologists to address the high dimensionality of their single-cell data.


Asunto(s)
Algoritmos , Biología Computacional , Citometría de Flujo , Análisis de la Célula Individual , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...