Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Fungi (Basel) ; 10(6)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38921397

RESUMEN

Komagataella phaffii (formerly Pichia pastoris) is a methylotrophic yeast widely used in laboratories around the world to produce recombinant proteins. Given its advantageous features, it has also gained much interest in the context of modern biotechnology. In this review, we present the utilization of K. phaffii as a platform to produce several products of economic interest such as biopharmaceuticals, renewable chemicals, fuels, biomaterials, and food/feed products. Finally, we present synthetic biology approaches currently used for strain engineering, aiming at the production of new bioproducts.

2.
J Fungi (Basel) ; 10(5)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38786676

RESUMEN

Cotton is an important plant-based protein. Cottonseed cake, a byproduct of the biodiesel industry, offers potential in animal supplementation, although the presence of the antinutritional sesquiterpenoid gossypol limits utilization. The macrofungus Panus lecomtei offers potential in detoxification of antinutritional factors. Through an enzymatic and proteomic analysis of P. lecomtei strain BRM044603, grown on crushed whole cottonseed contrasting in the presence of free gossypol (FG), this study investigated FG biodegradation over a 15-day cultivation period. Fungal growth reduced FG to levels at 100 µg/g, with a complex adaptive response observed, involving primary metabolism and activation of oxidative enzymes for metabolism of xenobiotics. Increasing activity of secreted laccases correlated with a reduction in FG, with enzyme fractions degrading synthetic gossypol to trace levels. A total of 143 and 49 differentially abundant proteins were observed across the two contrasting growth conditions after 6 and 12 days of cultivation, respectively, revealing a dynamic protein profile during FG degradation, initially related to constitutive metabolism, then later associated with responses to oxidative stress. The findings advance our understanding of the mechanisms involved in gossypol degradation and highlight the potential of P. lecomtei BRM044603 in cotton waste biotreatment, relevant for animal supplementation, sustainable resource utilization, and bioremediation.

3.
Enzyme Microb Technol ; 177: 110424, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38479075

RESUMEN

In this work, the polygalacturonase (TL-PG1) from the thermophilic fungus Thermomyces lanuginosus was heterologously produced for the first time in the yeast Komagataella phaffii. The TL-PG1 was successfully expressed under the control of the AOX1 promoter and sequentially purified by His-tag affinity. The purified recombinant pectinase exhibited an activity of 462.6 U/mL toward polygalacturonic acid under optimal conditions (pH 6 and 55 ˚C) with a 2.83 mg/mL and 0.063 µmol/minute for Km and Vmax, respectively. When used as supplementation for biomass hydrolysis, TL-PG1 demonstrated synergy with the enzymatic cocktail Ctec3 to depolymerize orange citrus pulp, releasing 1.43 mg/mL of reducing sugar. In addition, TL-PG1 exhibited efficiency in fabric bioscouring, showing potential usage in the textile industry. Applying a protein dosage of 7 mg/mL, the time for the fabric to absorb water was 19.77 seconds (ten times faster than the control). Adding the surfactant Triton to the treatment allowed the reduction of the enzyme dosage by 50% and the water absorption time to 6.38 seconds. Altogether, this work describes a new versatile polygalacturonase from T. lanuginosus with the potential to be employed in the hydrolysis of lignocellulosic biomass and bioscouring.


Asunto(s)
Proteínas Fúngicas , Poligalacturonasa , Saccharomycetales , Biomasa , Eurotiales/enzimología , Eurotiales/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hidrólisis , Cinética , Poligalacturonasa/metabolismo , Poligalacturonasa/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Saccharomycetales/genética , Saccharomycetales/enzimología , Saccharomycetales/metabolismo , Industria Textil , Textiles
4.
Appl Microbiol Biotechnol ; 107(4): 1143-1157, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36625916

RESUMEN

Lignocellulosic biomass is a renewable raw material for producing several high-value-added chemicals and fuels. In general, xylose and glucose are the major sugars in biomass hydrolysates, and their efficient utilization by microorganisms is critical for an economical production process. Yeasts capable of co-consuming mixed sugars might lead to higher yields and productivities in industrial fermentation processes. Herein, we performed adaptive evolution assays with two xylose-fermenting yeasts, Spathaspora passalidarum and Scheffersomyces stipitis, to obtain derived clones with improved capabilities of glucose and xylose co-consumption. Adapted strains were obtained after successive growth selection using xylose and the non-metabolized glucose analog 2-deoxy-D-glucose as a selective pressure. The co-fermentation capacity of evolved and parental strains was evaluated on xylose-glucose mixtures. Our results revealed an improved co-assimilation capability by the evolved strains; however, xylose and glucose consumption were observed at slower rates than the parental yeasts. Genome resequencing of the evolved strains revealed genes affected by non-synonymous variants that might be involved with the co-consumption phenotype, including the HXT2.4 gene that encodes a putative glucose transporter in Sp. passalidarum. Expression of this mutant HXT2.4 in Saccharomyces cerevisiae improved the cells' co-assimilation of glucose and xylose. Therefore, our results demonstrated the successful improvement of co-fermentation through evolutionary engineering and the identification of potential targets for further genetic engineering of different yeast strains. KEY POINTS: • Laboratory evolution assay was used to obtain improved sugar co-consumption of non-Saccharomyces strains. • Evolved Sp. passalidarum and Sc. stipitis were able to more efficiently co-ferment glucose and xylose. • A mutant Hxt2.4 permease, which co-transports xylose and glucose, was identified.


Asunto(s)
Glucosa , Xilosa , Xilosa/metabolismo , Glucosa/metabolismo , Fermentación , Saccharomyces cerevisiae/metabolismo , Fenotipo
5.
Bioresour Technol ; 363: 127999, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36152978

RESUMEN

Liquefaction of high solid loadings of unpretreated corn stover pellets has been demonstrated with rheology of the resulting slurries enabling mixing and movement within biorefinery bioreactors. However, some forms of pelleted stover do not readily liquefy, so it is important to screen out lots of unsuitable pellets before processing is initiated. This work reports a laboratory assay that rapidly assesses whether pellets have the potential for enzyme-based liquefaction at high solids loadings. Twenty-eight pelleted corn stover (harvested at the same time and location) were analyzed using 20 mL enzyme solutions (3 FPU cellulase/ g biomass) at 30 % w/v solids loading. Imaging together with measurement of reducing sugars were performed over 24-hours. Some samples formed concentrated slurries of 300 mg/mL (dry basis) in the small-scale assay, which was later confirmed in an agitated bioreactor. Also, the laboratory assay showed potential for optimizing enzyme formulations that could be employed for slurry formation.


Asunto(s)
Celulasa , Zea mays , Reactores Biológicos , Hidrólisis , Azúcares
6.
World J Microbiol Biotechnol ; 37(12): 203, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34669053

RESUMEN

White mold disease, caused by the phytopathogen Sclerotinia sclerotiorum, provokes severe productivity losses in several economically important crops. Biocontrol agents, especially antagonist filamentous fungi, are environmentally friendly alternatives to the chemical fungicides used in white mold management. The objective of this study was to screen for basidiomycete fungi capable of inhibiting S. sclerotiorum and investigate their bioactive metabolites responsible for antifungal activities. Two out of 17 tested basidiomycete isolates inhibited the mycelial growth of S. sclerotiorum in pair culture experiments on agar plates, namely Oudemansiella canarii BRM-044600 and Laetisaria arvalis ATCC52088. O. canarii BRM-044600 liquid culture filtrate exhibited the greatest antifungal activity and was selected for further investigation. UHPLC-MS analysis suggests that six putative strobilurins, including strobilurin A and/or stereoisomers of this compound (m/z 259.1299, [M + H]+) and three putative strobilurins with m/z 257.1184 ([M + H]+) are likely responsible for the antifungal activity observed in the culture filtrate. For the first time, this work demonstrated the potential of O. canarii for white mold biocontrol and strobilurin production.


Asunto(s)
Agaricales/metabolismo , Antifúngicos/metabolismo , Antifúngicos/farmacología , Ascomicetos/efectos de los fármacos , Metabolismo Secundario , Basidiomycota , Agentes de Control Biológico/farmacología , Ácidos Grasos Insaturados/metabolismo , Fungicidas Industriales/farmacología , Pruebas de Sensibilidad Microbiana , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Estereoisomerismo , Estrobilurinas/metabolismo
7.
Microbiol Spectr ; 9(2): e0108821, 2021 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-34523973

RESUMEN

Humicola grisea var. thermoidea is a thermophilic ascomycete and important enzyme producer that has an efficient enzymatic system with a broad spectrum of thermostable carbohydrate-active (CAZy) enzymes. These enzymes can be employed in lignocellulose biomass deconstruction and other industrial applications. In this work, the genome of H. grisea var. thermoidea was sequenced. The acquired sequence reads were assembled into a total length of 28.75 Mbp. Genome features correlate with what was expected for thermophilic Sordariomycetes. The transcriptomic data showed that sugarcane bagasse significantly upregulated genes related to primary metabolism and polysaccharide deconstruction, especially hydrolases, at both pH 5 and pH 8. However, a number of exclusive and shared genes between the pH values were found, especially at pH 8. H. grisea expresses an average of 211 CAZy enzymes (CAZymes), which are capable of acting in different substrates. The top upregulated genes at both pH values represent CAZyme-encoding genes from different classes, including acetylxylan esterase, endo-1,4-ß-mannosidase, exoglucanase, and endoglucanase genes. For the first time, the arsenal that the thermophilic fungus H. grisea var. thermoidea possesses to degrade the lignocellulosic biomass is shown. Carbon source and pH are of pivotal importance in regulating gene expression in this organism, and alkaline pH is a key regulatory factor for sugarcane bagasse hydrolysis. This work paves the way for the genetic manipulation and robust biotechnological applications of this fungus. IMPORTANCE Most studies regarding the use of fungi as enzyme producers for biomass deconstruction have focused on mesophile species, whereas the potential of thermophiles has been evaluated less. This study revealed, through genome and transcriptome analyses, the genetic repertoire of the biotechnological relevant thermophile fungus Humicola grisea. Comparative genomics helped us to further understand the biology and biotechnological potential of H. grisea. The results demonstrate that this fungus possesses an arsenal of carbohydrate-active (CAZy) enzymes to degrade the lignocellulosic biomass. Indeed, it expresses more than 200 genes encoding CAZy enzymes when cultivated in sugarcane bagasse. Carbon source and pH are key factors for regulating the gene expression in this organism. This work shows, for the first time, the great potential of H. grisea as an enzyme producer and a gene donor for biotechnological applications and provides the base for the genetic manipulation and robust biotechnological applications of this fungus.


Asunto(s)
Ascomicetos/enzimología , Ascomicetos/metabolismo , Metabolismo de los Hidratos de Carbono/fisiología , Lignina/metabolismo , Saccharum/microbiología , Ascomicetos/genética , Composición de Base/genética , Biomasa , Metabolismo de los Hidratos de Carbono/genética , Perfilación de la Expresión Génica , Genoma Fúngico/genética , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Saccharum/metabolismo , Transcriptoma/genética , Secuenciación Completa del Genoma
8.
Microorganisms ; 9(7)2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202822

RESUMEN

Sugarcane bagasse is an agricultural residue rich in xylose, which may be used as a feedstock for the production of high-value-added chemicals, such as xylonic acid, an organic acid listed as one of the top 30 value-added chemicals on a NREL report. Here, Zymomonas mobilis was engineered for the first time to produce xylonic acid from sugarcane bagasse hydrolysate. Seven coding genes for xylose dehydrogenase (XDH) were tested. The expression of XDH gene from Paraburkholderia xenovorans allowed the highest production of xylonic acid (26.17 ± 0.58 g L-1) from 50 g L-1 xylose in shake flasks, with a productivity of 1.85 ± 0.06 g L-1 h-1 and a yield of 1.04 ± 0.04 gAX/gX. Deletion of the xylose reductase gene further increased the production of xylonic acid to 56.44 ± 1.93 g L-1 from 54.27 ± 0.26 g L-1 xylose in a bioreactor. Strain performance was also evaluated in sugarcane bagasse hydrolysate as a cheap feedstock, which resulted in the production of 11.13 g L-1 xylonic acid from 10 g L-1 xylose. The results show that Z. mobilis may be regarded as a potential platform for the production of organic acids from cheap lignocellulosic biomass in the context of biorefineries.

9.
Braz J Microbiol ; 52(2): 575-586, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33825150

RESUMEN

Lignocellulosic hydrolysates will also contain compounds that inhibit microbial metabolism, such as organic acids, furaldehydes, and phenolic compounds. Understanding the response of yeasts toward such inhibitors is important to the development of different bioprocesses. In this work, the growth capacity of 7 industrial Saccharomyces cerevisiae and 7 non-Saccharomyces yeasts was compared in the presence of 3 different concentrations of furaldehydes (furfural and 5-hydroxymetil-furfural), organic acids (acetic and formic acids), and phenolic compounds (vanillin, syringaldehyde, ferulic, and coumaric acids). Then, Candida tropicalis JA2, Meyerozyma caribbica JA9, Wickerhamomyces anomalus 740, S. cerevisiae JP1, B1.1, and G06 were selected for fermentation in presence of acetic acid, HMF, and vanillin because they proved to be most tolerant to the tested compounds, while Spathaspora sp. JA1 because its xylose consumption rate. The results obtained showed a dose-dependent response of the yeasts toward the eight different inhibitors. Among the compared yeasts, S. cerevisiae strains presented higher tolerance than non-Saccharomyces, 3 of them with the highest tolerance among all. Regarding the non-Saccharomyces yeasts, C. tropicalis JA2 and W. anomalus 740 appeared as the most tolerant, whereas Spathaspora strains appeared very sensitive to the different compounds.


Asunto(s)
Ácidos/farmacología , Furaldehído/farmacología , Lignina/metabolismo , Fenoles/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Levaduras/efectos de los fármacos , Levaduras/crecimiento & desarrollo , Viabilidad Microbiana/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Levaduras/metabolismo
10.
Methods Mol Biol ; 1859: 155-169, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30421228

RESUMEN

Mass spectrometry is a sensitive and selective analytical technique that enables detection and quantitation of low abundance compounds in a complex sample matrix. Targeted metabolomics allows for quantitative analysis of metabolites, providing kinetic information of production and consumption rates, an essential step to investigate microbial metabolism. Here, we describe a targeted metabolomics protocol for yeast samples, from sample preparation to mass spectrometry analysis, which enables the identification of metabolic fluxes after xylose consumption. Sample preparation methods were optimized for quenching of yeast metabolism followed by intracellular metabolite extraction, using cold methanol and boiling ethanol protocols. Ultrahigh performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) methods using ion pair chromatography (IPC) and hydrophilic interaction liquid chromatography (HILIC) allowed for the quantitation of 18 metabolites involved in central carbon metabolism (glycolysis, pentose phosphate pathway, and tricarboxylic acid cycle). The protocol here described was successfully applied to quantify metabolites in Scheffersomyces stipitis, Spathaspora passalidarum, Spathaspora arborariae, and Candida tenuis samples after xylose consumption.


Asunto(s)
Metabolómica/métodos , Espectrometría de Masas en Tándem/métodos , Xilosa/metabolismo , Levaduras/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Fermentación , Metabolómica/instrumentación , Espectrometría de Masas en Tándem/instrumentación
11.
J Am Soc Mass Spectrom ; 28(12): 2646-2657, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28879550

RESUMEN

Xylose fermentation is a bottleneck in second-generation ethanol production. As such, a comprehensive understanding of xylose metabolism in naturally xylose-fermenting yeasts is essential for prospection and construction of recombinant yeast strains. The objective of the current study was to establish a reliable metabolomics protocol for quantification of key metabolites of xylose catabolism pathways in yeast, and to apply this protocol to Spathaspora arborariae. Ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) was used to quantify metabolites, and afterwards, sample preparation was optimized to examine yeast intracellular metabolites. S. arborariae was cultivated using xylose as a carbon source under aerobic and oxygen-limited conditions. Ion pair chromatography (IPC) and hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) were shown to efficiently quantify 14 and 5 metabolites, respectively, in a more rapid chromatographic protocol than previously described. Thirteen and eleven metabolites were quantified in S. arborariae under aerobic and oxygen-limited conditions, respectively. This targeted metabolomics protocol is shown here to quantify a total of 19 metabolites, including sugars, phosphates, coenzymes, monosaccharides, and alcohols, from xylose catabolism pathways (glycolysis, pentose phosphate pathway, and tricarboxylic acid cycle) in yeast. Furthermore, to our knowledge, this is the first time that intracellular metabolites have been quantified in S. arborariae after xylose consumption. The results indicated that fine control of oxygen levels during fermentation is necessary to optimize ethanol production by S. arborariae. The protocol presented here may be applied to other yeast species and could support yeast genetic engineering to improve second generation ethanol production. Graphical Abstract ᅟ.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Metabolómica/métodos , Saccharomyces/metabolismo , Espectrometría de Masas en Tándem/métodos , Xilosa/metabolismo , Reactores Biológicos , Fermentación , Redes y Vías Metabólicas , Metaboloma
12.
Int J Mol Sci ; 17(3): 207, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26927067

RESUMEN

Many years have passed since the first genetically modified Saccharomyces cerevisiae strains capable of fermenting xylose were obtained with the promise of an environmentally sustainable solution for the conversion of the abundant lignocellulosic biomass to ethanol. Several challenges emerged from these first experiences, most of them related to solving redox imbalances, discovering new pathways for xylose utilization, modulation of the expression of genes of the non-oxidative pentose phosphate pathway, and reduction of xylitol formation. Strategies on evolutionary engineering were used to improve fermentation kinetics, but the resulting strains were still far from industrial application. Lignocellulosic hydrolysates proved to have different inhibitors derived from lignin and sugar degradation, along with significant amounts of acetic acid, intrinsically related with biomass deconstruction. This, associated with pH, temperature, high ethanol, and other stress fluctuations presented on large scale fermentations led the search for yeasts with more robust backgrounds, like industrial strains, as engineering targets. Some promising yeasts were obtained both from studies of stress tolerance genes and adaptation on hydrolysates. Since fermentation times on mixed-substrate hydrolysates were still not cost-effective, the more selective search for new or engineered sugar transporters for xylose are still the focus of many recent studies. These challenges, as well as under-appreciated process strategies, will be discussed in this review.


Asunto(s)
Fermentación , Microbiología Industrial/métodos , Saccharomyces cerevisiae/metabolismo , Xilosa/metabolismo , Etanol/metabolismo , Saccharomyces cerevisiae/genética
13.
Yeast ; 22(9): 725-37, 2005 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-16034819

RESUMEN

We report the cloning of the 3-phosphoglycerate kinase gene (PGK1) from the methylotrophic yeast Pichia pastoris by a PCR approach. The coding sequence of the PGK1 gene comprises 1251 bp with the potential to encode a polypeptide of 416 amino acid residues, which shows high identity to homologous proteins from other yeasts. The promoter region of this gene (P(PGK1)) contains regulatory cis-elements found in other PGK1 genes, such as TATA box, CT-rich block and a heat shock element. In the 3' downstream region we identified a tripartite element 5'-TAG-TAGT-TTT-3', which is supposed to be important for transcription termination. As in other yeasts, the PGK1 gene from P. pastoris is present as a single-copy gene. Northern blot analysis revealed that the gene is transcribed as a 1.5 kb mRNA; when cells are grown on glucose the levels of this mRNA are increased two-fold in comparison to cells grown on glycerol. The transcriptional regulation of this gene by the carbon source was further confirmed when the alpha-amylase gene from Bacillus subtilis was placed under the control of P(PGK1): higher levels of expression were obtained when cells were grown on glucose as compared to glycerol and methanol. Preliminary results related to the strength of P(PGK1) show that it represents a potential alternative to constitutive heterologous expression in P. pastoris.


Asunto(s)
Fosfoglicerato Quinasa/genética , Pichia/enzimología , Secuencia de Aminoácidos , Secuencia de Bases , Northern Blotting , Southern Blotting , Clonación Molecular , Codón/genética , ADN de Hongos/química , ADN de Hongos/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Vectores Genéticos/química , Vectores Genéticos/genética , Datos de Secuencia Molecular , Fosfoglicerato Quinasa/metabolismo , Pichia/genética , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas , Alineación de Secuencia , alfa-Amilasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...