Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 14(2): e0211831, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30721272

RESUMEN

Leishmaniasis encompasses a group of diverse clinical diseases caused by protozoan parasites of the Leishmania genus. This disease is a major public health problem in the New World affecting people exposed in endemic regions. The city of Governador Valadares (Minas Gerais/Brazil) is a re-emerging area for visceral leishmaniasis, with 191 human cases reported from 2008 to 2017 and a lethality rate of 14.7%. The transmission of the parasite occurs intensely in this region with up to 22% of domestic dogs with positive serology for the visceral form. Lu. longipalpis is one of the most abundant sand fly species in this area. Despite this scenario, so far there is no information regarding the circulating Leishmania species in the insect vector Lutzomyia longipalpis in this focus. We collected 616 female Lutzomyia longipalpis sand flies between January and September 2015 in the Vila Parque Ibituruna neighborhood (Governador Valadares/MG), which is located on a transitional area between the sylvatic and urban environments with residences built near a preserved area. After DNA extraction of individual sand flies, the natural Leishmania infections in Lu. longipalpis were detected by conventional PCR, using primers derived from kDNA sequences, specific for L. (Leishmania) or L. (Viannia) subgenus. The sensitivity of these PCR reactions was 0.1 pg of DNA for each Leishmania subgenus and the total infection rate of 16.2% (100 positive specimens). Species-specific PCR detected the presence of multiple Leishmania species in infected Lu. longipalpis specimens in Governador Valadares, including L. amazonensis (n = 3), L. infantum (n = 28), L. (Viannia) spp. (n = 20), coinfections with L. infantum and L. (Viannia) spp. (n = 5), and L. (Leishmania) spp (n = 44). Our results demonstrate that multiple Leishmania species circulate in Lu. longipalpis in Governador Valadares and reveal a potential increasing risk of transmission of the different circulating parasite species. This information reinforces the need for epidemiological and entomological surveillance in this endemic focus, and the development of effective control strategies against leishmaniasis.


Asunto(s)
Insectos Vectores/parasitología , Leishmania/clasificación , Leishmania/crecimiento & desarrollo , Psychodidae/parasitología , Animales , Brasil/epidemiología , Humanos , Leishmaniasis/epidemiología , Leishmaniasis/genética , Leishmaniasis/transmisión , Reacción en Cadena de la Polimerasa , Remodelación Urbana
2.
BMC Genomics ; 19(1): 816, 2018 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-30424726

RESUMEN

BACKGROUND: Trypanosoma cruzi, the etiologic agent of Chagas disease, is currently divided into six discrete typing units (DTUs), named TcI-TcVI. TcII is among the major DTUs enrolled in human infections in South America southern cone, where it is associated with severe cardiac and digestive symptoms. Despite the importance of TcII in Chagas disease epidemiology and pathology, so far, no genome-wide comparisons of the mitochondrial and nuclear genomes of TcII field isolates have been performed to track the variability and evolution of this DTU in endemic regions. RESULTS: In the present work, we have sequenced and compared the whole nuclear and mitochondrial genomes of seven TcII strains isolated from chagasic patients from the central and northeastern regions of Minas Gerais, Brazil, revealing an extensive genetic variability within this DTU. A comparison of the phylogeny based on the nuclear or mitochondrial genomes revealed that the majority of branches were shared by both sequences. The subtle divergences in the branches are probably consequence of mitochondrial introgression events between TcII strains. Two T. cruzi strains isolated from patients living in the central region of Minas Gerais, S15 and S162a, were clustered in the nuclear and mitochondrial phylogeny analysis. These two strains were isolated from the other five by the Espinhaço Mountains, a geographic barrier that could have restricted the traffic of insect vectors during T. cruzi evolution in the Minas Gerais state. Finally, the presence of aneuploidies was evaluated, revealing that all seven TcII strains have a different pattern of chromosomal duplication/loss. CONCLUSIONS: Analysis of genomic variability and aneuploidies suggests that there is significant genomic variability within Minas Gerais TcII strains, which could be exploited by the parasite to allow rapid selection of favorable phenotypes. Also, the aneuploidy patterns vary among T. cruzi strains and does not correlate with the nuclear phylogeny, suggesting that chromosomal duplication/loss are recent and frequent events in the parasite evolution.


Asunto(s)
Aneuploidia , Enfermedad de Chagas/parasitología , Variación Genética , Genoma de Protozoos , Proteínas Protozoarias/genética , Trypanosoma cruzi/genética , Secuenciación Completa del Genoma/métodos , Animales , Enfermedad de Chagas/transmisión , ADN Protozoario/genética , Genotipo , Humanos , Insectos Vectores/parasitología , Tipificación Molecular , Filogenia , Trypanosoma cruzi/clasificación , Trypanosoma cruzi/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA