Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Photochem Photobiol B ; 256: 112943, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38788534

RESUMEN

With the rapid development of nanotechnology, various functional nanomaterials have shown exciting potential in biomedical areas such as drug delivery, antitumor, and antibacterial therapy. These nanomaterials improve the stability and selectivity of loaded drugs, reduce drug-induced side effects, realize controlled and targeted drug release, and increase therapeutic efficacy. The increased resistance to antifungal microbicides in medical practice and their side effects stimulate interest in new therapies, such as Photodynamic Therapy (PDT), which do not generate resistance in microorganisms and effectively control the pathology. The present study aimed to evaluate, in vitro, the efficacy of photodynamic therapy on Candida albicans using 1,9-Dimethyl-Methylene Blue (DMMB) as photosensitizer, red LED (λ630), and nanoencapsulation of DMMB (RL-NPs/DMMB) using rhamnolipids produced by Pseudomonas aeruginosa to evaluate if there is better performance of DMMB + RL particles compared to DMMB alone via the characterization of DMMB + RL and colony forming count. The tests were carried out across six experimental groups (Control, DMMB, RL-NPs, RL-NPs/DMMB, PDT and PDT + RL-NPs/DMMB) using in the groups with nanoparticles, DMMB (750 ng/mL) encapsulated with rhamnolipids in a 1:1 ratio, the light source consisted of a prototype built with a set of red LEDs with an energy density of 20 J/cm2. The results showed that applying PDT combined with encapsulation (RL-NPs/DMMB) was a more practical approach to inhibit Candida albicans (2 log reduction) than conventional applications, with a possible clinical application protocol.

2.
Photodiagnosis Photodyn Ther ; 42: 103503, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36907259

RESUMEN

Orthodontic treatment involves the use of apparatuses that impairs oral hygiene making patients susceptible to periodontal diseases and caries. To prevent increased antimicrobial resistance A-PDT has shown itself a feasible option. The aim of this investigation was to assess the efficiency of A-PDT employing 1,9-Dimethyl-Methylene Blue zinc chloride double salt - DMMB as a photosensitizing agent combined with red LED irradiation (λ640 ± 5 ηm) against oral biofilm of patients undertaking orthodontic treatment. Twenty-one patients agreed to participate. Four biofilm collections were carried out on brackets and gingiva around inferior central incisors; first was carried out before any treatment (Control); second followed five minutes of pre-irradiation, the third was immediately after the first AmPDT, and the last after a second AmPDT. Then, a microbiological routine for microorganism growth was carried out and, after 24-h, CFU counting was performed. There was significant difference between all groups. No significant difference was seen between Control and Photosensitizer and AmpDT1 and AmPDT2 groups. Significant differences were observed between Control and AmPDT1 and AmPDT2 groups, Photosensitizer and AmPDT1 and AmPDT2 groups. It was concluded that double AmPDT using DMBB in nano concentration and red LED was capable to meaningfully decrease the number of CFUs in orthodontic patients.


Asunto(s)
Antiinfecciosos , Fotoquimioterapia , Humanos , Azul de Metileno/farmacología , Azul de Metileno/uso terapéutico , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fotoquimioterapia/métodos , Zinc
3.
J Photochem Photobiol B ; 226: 112356, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34801926

RESUMEN

Oil recovery is a challenge and microbial enhanced oil recovery is an option. We theorized that the use of produced water (PW) with photo-stimulation could influence both production and viscosity of Xanthan gum. This study aimed at the evaluation of the effect of photo-stimulation by λ630 ± 1 ηm LED light on the biosynthesis of Xanthan gum produced by Xanthomonas campestris IBSBF 2103 strain reusing PW of the oil industry. We assessed the effect of photo-stimulation by LED light (λ630 nm) on the biosynthesis of Xanthan gum produced by X. campestris in medium containing produced water. Different energy densities applied during the microbial growth phase were tested. The highest production was achieved when using 12 J/cm2 LED light (p < 0.01). Three protocols were assessed: Non-irradiated (Control), Irradiation with LED light during the growth phase (LEDgrowth) and Irradiation with LED light during both growth and production phases (LED growth+production). Both the amount and viscosity of the xanthan gum was significantly higher (p < 0.01) in the group LEDgrowth+production. The study showed that LED irradiation (λ630 ± 1 ηm) during both the growth and production phases of the biopolymer increased both the production and viscosity of Xanthan gum.


Asunto(s)
Viscosidad
4.
J Photochem Photobiol B ; 213: 112057, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33142219

RESUMEN

Oil is expected to continue to be one of the most important sources of energy in the world and world's energy matrix for the foreseeable future. However, high demand for energy and the decline of the production of oil fields makes oil recovery a challenge. Most techniques used for the recovery process are expensive, non-sustainable and technically difficult to implement. In this context, microbial enhanced oil recovery (MEOR) represents an attractive alternative. It employs products derived from the metabolism of microorganisms that produce biopolymers. Certain bacteria species (e.g., Xanthomonas campestris) produce polysaccharides (exopolysaccharides - EPS) such as the well-known Xanthan gum (XG). We hypothesized that the use of produced water (PW) water in combination photo-stimulation with laser/LED could influence the production and composition of XG. Raman spectroscopy has been used for qualitative and quantitative evaluation of the biochemical composition of XG biopolymer under light stimulation. X. campestris cultures in either distilled water or dialysis-produced water were studied under the absence or presence of laser irradiation (λ = 660 nm, CW, spot size 0.040 cm2, 40 mW, 444 s, 8.0 J/cm2) or LED (λ = 630 nm ± 2 nm, CW, spot size 0.50 cm2, 140 mW, 500 s, 12 J/cm2). XG produced by these cultures was analyzed by Raman spectroscopy at 1064 nm excitation and subjected to principal component analysis (PCA). Results of the exploratory analysis and ANOVA general linear model (GLM) suggested that the extent of XG and pyruvate (pyruvyl mannose) production was affected differentially in X. campestris when cultured in distilled water plus LED photo-stimulation versus dialysis-produced water plus LED photo-stimulation. XG production increased in the distilled water culture. In contrast, both pyruvate acetyl mannose content went up in the dialysis-water culture. These results open a wide field of opportunities in the use of metal-enriched cultures in combination with photo-biomodulation to direct and optimize bacterial production of compounds (i.e., XG) that may be of great benefit in the implementation of sustainable practices for oil extraction.


Asunto(s)
Mezclas Complejas/análisis , Medios de Cultivo/química , Polisacáridos Bacterianos/análisis , Xanthomonas campestris/química , Mezclas Complejas/metabolismo , Medios de Cultivo/metabolismo , Rayos Láser , Polisacáridos Bacterianos/metabolismo , Análisis de Componente Principal , Espectrometría Raman , Viscosidad , Agua
5.
J Photochem Photobiol B ; 213: 112052, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33074141

RESUMEN

Produced water (PW) is a by-product generated throughout oil exploration. Geological formation and geographical location of the reservoir influence its physical, chemical and biological characteristics. Xanthan gum (XG), an exopolysaccharide (EPS) produced by Xanthomonas campestris, has been widely used in enhanced oil recovery (EOR) technology because of its high viscosity, pseudoplastic behavior, stability in function of salinity, temperature and alkaline conditions. The production of XG may be affected by the composition of the PW, where the acetyl and pyruvyl radicals may be present in the mannoses. The aim of this study was to evaluate the composition of XG produced by X. campestris, particularly the amount of Xanthan, acetyl and pyruvyl groups, in culture mediums containing distilled (DW) or produced (PW) water in different concentrations, by means of dispersive Raman spectroscopy (1064 nm). The spectra of XG showed peaks referred to the main constituents of the Xanthan (glucose, mannose and glucuronic acid). Spectral features assigned to pyruvyl were seen in all samples mainly at ~1010 cm-1, with higher intensity when using DW and 25% PW. PCA loadings showed that the peaks assigned to pyruvyl are consistent to presence of sodium pyruvate (~1040/~1050 and ~ 1432 cm-1) and were higher in the samples obtained in 25% PW. ANOVA GLM applied to Raman peaks of interest (~1010 and ~ 1090 cm-1) and to PCA scores (Score 1 to Score 3) showed that both were influenced by the type of water used in the culture medium, where the XG were strongly reduced in the groups PW compared to DW while the pyruvyl content increased proportionally with the concentration of PW. The results suggest that the composition of the water used in the bacteria's culture medium influenced the composition of XG, including the amount of Xanthan and particularly the pyruvyl content, and therefore needs to be considered when using this approach of injecting XG in oil fields as pyruvyl content affects viscosity.


Asunto(s)
Yacimiento de Petróleo y Gas/microbiología , Polisacáridos Bacterianos/química , Xanthomonas campestris/metabolismo , Glucosa/química , Ácido Glucurónico/química , Manosa/química , Yacimiento de Petróleo y Gas/química , Aceites , Análisis de Componente Principal , Ácido Pirúvico/química , Espectrometría Raman , Viscosidad , Agua/metabolismo
6.
Photodiagnosis Photodyn Ther ; 31: 101930, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32717452

RESUMEN

Photodynamic inactivation is a promising method for the treatment of infectious diseases. Nanotechnology through gold nanoparticles, as a tool to improve the delivery of photosensitizer is an attractive approach to enhance photodynamic inactivation of bacteria. Moreover, gold nanoparticles enchance the absorption of light due to their plasmon resonance. The aim of this study was to evaluate in vitro photodynamic inactivation effects of 1.9-Dimethyl-Methylene Blue (DMMB)-AuNPs associated with the red LED (λ630 ηm ± 20 ηm, 125 mW, 12 J / cm², 192 s) on S. aureus strain. Eight experimental groups were studied: Control, LED, AuNPs, AuNPs + LED, DMMB, DMMB + LED, DMMB + AuNPs, DMMB + AuNPs + LED. After incubation, the number of bacteria surviving each treatment was determined and then enumerated by viable counting (CFU / mL). The logarithm of CFU / mL (CFU/mL log10) was calculated. All experiments realized in triplicate. The statistical analyses included one-way ANOVA tests, Tukey's multiple comparisons and nonlinear regression, p values <0.05 were considered statistically significant. According to results, the photodynamic inactivation of S. aureus on groups DMMB + LED and DMMB-AuNPs + LED, showed a significant reduction of the microbial load (p < 0.0001) when compared to the Control group. The decimal reduction (RD) of these groups were 99.96 % (RD = 3) and 99.994 % (RD = 4) respectively. In conclusion, these findings demonstrated that photodynamic inactivation is enhanced by using DMMB-AuNPs on S. aureus.


Asunto(s)
Nanopartículas del Metal , Fotoquimioterapia , Oro , Azul de Metileno/análogos & derivados , Azul de Metileno/farmacología , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Plancton , Staphylococcus aureus
7.
Photodiagnosis Photodyn Ther ; 28: 221-225, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31394297

RESUMEN

BACKGROUND: Orthodontics involves diagnosis and treatment of dental and skeletal malocclusions. Orthodontic apparatus may repair these malocclusions but may also impair oral hygiene making patients prone to develop both periodontal diseases and caries. Antimicrobial agents may be used to prevent this.To avoid increased antimicrobial resistance to available drugs, A-PDT (Antimicrobial Photodynamic Therapy) appears as a viable alternative. OBJECTIVE: This work aimed to evaluate the efficacy of A-PDT on reducing the number of colony forming units (CFU) through the use of phenothiazine compound (methylene blue+ toluidine blue) as a photosensitizer, associated with red LED (λ640±5ηm) irradiation in orthodontic patients. METHODOLOGY: Twenty-one patients consented to participate in the study. Three biofilm collections were performed around the brackets and gums of the inferior central incisors; first before any intervention (Control); second after 5min of pre-irradiation and the last one immediately after AmPDT. Subsequently, a microbiological routine for microorganism growth period were performed and CFU counting after a 24h done. RESULTS: The data showed that the AmPDT was able to reduce CFU count around 90% when compared to Control group (p=0.007) and also between the A-PDT and Photosensitizer groups (p=0.010). However, there were no differences between the Control and Photosensitizer groups. CONCLUSION: A-PDT associated with the use of phenothiazine compounds and red LED was able to significantly reduce the number of CFUs in orthodontic patients.


Asunto(s)
Antiprotozoarios/uso terapéutico , Biopelículas/efectos de los fármacos , Caries Dental/microbiología , Soportes Ortodóncicos , Enfermedades Periodontales/microbiología , Fenotiazinas/uso terapéutico , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/uso terapéutico , Recuento de Colonia Microbiana , Estudios Cruzados , Humanos , Azul de Metileno/uso terapéutico , Cloruro de Tolonio/uso terapéutico
8.
J Phycol ; 55(5): 1050-1058, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31315155

RESUMEN

The reuse of wastewater is important for reducing costs involved with algal lipid production. However, nutrient limitations, wastewater-borne microbes, and mixotrophic growth can significantly affect biomass yields and lipid/biomass ratios. This research compared the growth performances of both Chlorella vulgaris and Pseudokirchneriella subcapitata on domestic wastewater effluent. The experiments were conducted in the presence and absence of wastewater-borne bacteria, while additionally assessing the impact of distinct nitrate and glucose supplementations. When compared to the sterilized controls, the presence of wastewater-borne bacteria in the effluent reduced C. vulgaris and P. subcapitata total biomass production by 37% and 46%, respectively. In the corresponding treatments supplemented with glucose and nitrate, total biomass production increased by 12% and 61%, respectively. The highest biomass production of 1.11 and 0.72 g · L-1 was, however, observed in the sterilized treatments with both glucose and nitrate supplementations for C. vulgaris and P. subcapitata, respectively. Lipid to biomass ratios were, on average, threefold higher when only nitrate was introduced in the sterilized treatments for both species (0.4 and 0.5, respectively). Therefore, the combination of nitrate and glucose supplementation is shown to be an important strategy for enhancing algal lipid and biomass production when those algae are grown in the presence of wastewater-borne bacteria. On the other hand, in the absence of wastewater-borne bacteria, only nitrate supplementation can significantly improve lipid/biomass ratios.


Asunto(s)
Chlorella vulgaris , Microalgas , Bacterias , Biomasa , Glucosa , Nitrógeno , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...