Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Exp Rheumatol ; 41(7): 1473-1479, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36441653

RESUMEN

OBJECTIVES: To quantify survivin and NETs in synovial fluid (SF) of patients with rheumatoid arthritis (RA) and osteoarthritis (OA), and to assess whether there is a correlation of the quantifications with the exclusion of OA diagnosis and the activity of RA. METHODS: We performed a cross-sectional, observational study, in which 32 patients with RA and 16 with OA were included. Clinical and laboratory data were obtained, in addition to routine analysis of SF and the measurement of SF survivin and NETs. RA activity was assessed by DAS28. RESULTS: Concentrations of survivin (median, 356.9 vs. 49.9 pg/mL; p=0.0006) and NETs (median, 100.7 vs. 49.7 ng/mL; p=0.004) were elevated in the SF of the RA group compared to those of the OA group. ROC curves showed the following values for measurements of survivin and NETs: AUC of 79% and 75% respectively, with sensitivity of 75% and specificity of 78% for both. There was no correlation between survivin and NETs values for both groups, but we found association between SF survivin and serum ACPA for RA patients. CONCLUSIONS: We found an independent association between levels of survivin and NETs in SF with the exclusion of OA diagnosis, but not with RA activity. There was no correlation between survivin and NETs in SF, because we suppose that resistance to apoptosis, mediated by survivin, and NETosis are independently related to the pathophysiology of RA.


Asunto(s)
Artritis Reumatoide , Osteoartritis , Líquido Sinovial , Humanos , Biomarcadores , Estudios Transversales , Survivin
2.
Elife ; 112022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35666101

RESUMEN

COVID-19 is a disease of dysfunctional immune responses, but the mechanisms triggering immunopathogenesis are not established. The functional plasticity of macrophages allows this cell type to promote pathogen elimination and inflammation or suppress inflammation and promote tissue remodeling and injury repair. During an infection, the clearance of dead and dying cells, a process named efferocytosis, can modulate the interplay between these contrasting functions. Here, we show that engulfment of SARS-CoV-2-infected apoptotic cells exacerbates inflammatory cytokine production, inhibits the expression of efferocytic receptors, and impairs continual efferocytosis by macrophages. We also provide evidence supporting that lung monocytes and macrophages from severe COVID-19 patients have compromised efferocytic capacity. Our findings reveal that dysfunctional efferocytosis of SARS-CoV-2-infected cell corpses suppresses macrophage anti-inflammation and efficient tissue repair programs and provides mechanistic insights for the excessive production of pro-inflammatory cytokines and accumulation of tissue damage associated with COVID-19 immunopathogenesis.


Asunto(s)
COVID-19 , SARS-CoV-2 , Antiinflamatorios/farmacología , Apoptosis , Humanos , Macrófagos/metabolismo , Fagocitosis
3.
J Exp Med ; 218(3)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33231615

RESUMEN

Severe cases of COVID-19 are characterized by a strong inflammatory process that may ultimately lead to organ failure and patient death. The NLRP3 inflammasome is a molecular platform that promotes inflammation via cleavage and activation of key inflammatory molecules including active caspase-1 (Casp1p20), IL-1ß, and IL-18. Although participation of the inflammasome in COVID-19 has been highly speculated, the inflammasome activation and participation in the outcome of the disease are unknown. Here we demonstrate that the NLRP3 inflammasome is activated in response to SARS-CoV-2 infection and is active in COVID-19 patients. Studying moderate and severe COVID-19 patients, we found active NLRP3 inflammasome in PBMCs and tissues of postmortem patients upon autopsy. Inflammasome-derived products such as Casp1p20 and IL-18 in the sera correlated with the markers of COVID-19 severity, including IL-6 and LDH. Moreover, higher levels of IL-18 and Casp1p20 are associated with disease severity and poor clinical outcome. Our results suggest that inflammasomes participate in the pathophysiology of the disease, indicating that these platforms might be a marker of disease severity and a potential therapeutic target for COVID-19.


Asunto(s)
COVID-19/patología , COVID-19/virología , Inflamasomas/metabolismo , SARS-CoV-2/fisiología , Índice de Severidad de la Enfermedad , Apoptosis , Comorbilidad , Citocinas/biosíntesis , Humanos , Pulmón/patología , Monocitos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Cambios Post Mortem , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...