Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37958811

RESUMEN

Increased genetic risk for melanoma can occur in the context of germline pathogenic variants in high-penetrance genes, such as CDKN2A and CDK4, risk variants in low- to moderate-penetrance genes (MC1R and MITF), and possibly due to variants in emerging genes, such as ACD, TERF2IP, and TERT. We aimed to identify germline variants in high- and low- to moderate-penetrance melanoma risk genes in Brazilian patients with clinical criteria for familial melanoma syndrome. We selected patients with three or more melanomas or melanoma patients from families with three tumors (melanoma and pancreatic cancer) in first- or second-degree relatives. Genetic testing was performed with a nine-gene panel (ACD, BAP1, CDK4, CDKN2A, POT1, TERT, TERF2IP, MC1R, and MITF). In 36 patients, we identified 2 (5.6%) with germline pathogenic variants in CDKN2A and BAP1 and 4 (11.1%) with variants of uncertain significance in the high-penetrance genes. MC1R variants were found in 86.5%, and both red hair color variants and unknown risk variants were enriched in patients compared to a control group. The low frequency of germline pathogenic variants in the high-penetrance genes and the high prevalence of MC1R variants found in our cohort show the importance of the MC1R genotype in determining the risk of melanoma in the Brazilian melanoma-prone families.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Brasil/epidemiología , Predisposición Genética a la Enfermedad , Melanoma/epidemiología , Melanoma/genética , Melanoma/patología , Neoplasias Cutáneas/epidemiología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Pruebas Genéticas , Mutación de Línea Germinal , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Receptor de Melanocortina Tipo 1/genética
2.
Oncotarget ; 8(58): 97871-97889, 2017 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-29228658

RESUMEN

Hepatoblastomas are uncommon embryonal liver tumors accounting for approximately 80% of childhood hepatic cancer. We hypothesized that epigenetic changes, including DNA methylation, could be relevant to hepatoblastoma onset. The methylomes of eight matched hepatoblastomas and non-tumoral liver tissues were characterized, and data were validated in an independent group (11 hepatoblastomas). In comparison to differentiated livers, hepatoblastomas exhibited a widespread and non-stochastic pattern of global low-level hypomethylation. The analysis revealed 1,359 differentially methylated CpG sites (DMSs) between hepatoblastomas and control livers, which are associated with 765 genes. Hypomethylation was detected in hepatoblastomas for ~58% of the DMSs with enrichment at intergenic sites, and most of the hypermethylated CpGs were located in CpG islands. Functional analyses revealed enrichment in signaling pathways involved in metabolism, negative regulation of cell differentiation, liver development, cancer, and Wnt signaling pathway. Strikingly, an important overlap was observed between the 1,359 DMSs and the CpG sites reported to exhibit methylation changes through liver development (p<0.0001), with similar patterns of methylation in both hepatoblastomas and fetal livers compared to adult livers. Overall, our results suggest an arrest at early stages of liver cell differentiation, in line with the hypothesis that hepatoblastoma ontogeny involves the disruption of liver development. This genome-wide methylation dysfunction, taken together with a relatively small number of driver genetic mutations reported for both adult and pediatric liver cancers, shed light on the relevance of epigenetic mechanisms for hepatic tumorigenesis.

3.
Exp Mol Pathol ; 97(3): 425-32, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25236571

RESUMEN

Melanoma is a highly aggressive cancer, accounting for up to 75% of skin cancer deaths. A small proportion of melanoma cases can be ascribed to the presence of highly penetrant germline mutations, and approximately 40% of hereditary melanoma cases are caused by CDKN2A mutations. The current study sought to investigate whether the presence of germline CDKN2A mutations or the occurrence of cutaneous melanoma would result in constitutive genome-wide DNA methylation changes. The leukocyte methylomes of two groups of melanoma patients (those with germline CDKN2A mutations and those without CDKN2A mutations) were analyzed together with the profile of a control group of individuals. A pattern of DNA hypomethylation was detected in the CDKN2A-negative patients relative to both CDKN2A-mutated patients and controls. Additionally, we delineated a panel of 90 CpG sites that were differentially methylated in CDKN2A-mutated patients relative to controls. Although we identified a possible constitutive epigenetic signature in CDKN2A-mutated patients, the occurrence of reported SNPs at the detected CpG sites complicated the data interpretation. Thus, further studies are required to elucidate the impact of these findings on melanoma predisposition and their possible effect on the penetrance of CDKN2A mutations.


Asunto(s)
Metilación de ADN/genética , Genes p16 , Mutación de Línea Germinal , Leucocitos , Melanoma/genética , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos
4.
Future Oncol ; 10(9): 1627-33, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25145432

RESUMEN

AIMS: Constitutive genetic factors are believed to predispose to cancer in children. This study investigated the role of rare germline copy number variations (CNVs) in pediatric cancer predisposition. PATIENTS & METHODS: A total of 54 patients who developed cancer in infancy were screened by array-CGH for germline CNVs. RESULTS: In total, 12 rare CNVs were detected, including a Xq27.2 triplication, and two >1.8 Mb deletions: one of them at 13q31, containing only RNA genes, and another at 3q26.33-q27.1, in a patient with congenital malformations. Detected rare CNVs are significantly larger than those identified in controls, and encompass genes never implicated in cancer predisposition. CONCLUSION: Our results suggest that constitutive CNVs contribute to the etiology of pediatric neoplasms, revealing new candidate genes for tumorigenesis.


Asunto(s)
Variaciones en el Número de Copia de ADN , Mutación de Línea Germinal , Neoplasias/genética , Adolescente , Estudios de Casos y Controles , Niño , Preescolar , Hibridación Genómica Comparativa , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Lactante , Recién Nacido
5.
Methods Mol Biol ; 873: 1-12, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22528345

RESUMEN

Although since 1998 more than 1,200 different hESC lines have been established worldwide, there is still a recognized interest in the establishment of new lines of hESC, particularly from HLA types and ethnic groups underrepresented among the currently available lines. The methodology of hESC derivation has evolved significantly since the initial derivations using human LIF (hLIF) for maintenance of pluripotency. However, there are still a number of alternative strategies for the different steps involved in establishing a new line of hESC. We have analyzed the different strategies/parameters used between 1998 and 2010 for the derivation of the 375 hESC lines able to form teratomas in immunocompromised mice deposited in two international stem cell registries. Here we describe some trends in the methodology for establishing hESC lines, discussing the developments in the field. Nevertheless, we describe a much greater heterogeneity of strategies for hESCs derivation than what is used for murine ESC lines, indicating that optimum conditions have not been identified yet, and thus, hESC establishment is still an evolving field of research.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Madre Embrionarias/citología , Línea Celular , Humanos
6.
PLoS One ; 5(6): e10947, 2010 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-20532033

RESUMEN

Imprinted inactivation of the paternal X chromosome in marsupials is the primordial mechanism of dosage compensation for X-linked genes between females and males in Therians. In Eutherian mammals, X chromosome inactivation (XCI) evolved into a random process in cells from the embryo proper, where either the maternal or paternal X can be inactivated. However, species like mouse and bovine maintained imprinted XCI exclusively in extraembryonic tissues. The existence of imprinted XCI in humans remains controversial, with studies based on the analyses of only one or two X-linked genes in different extraembryonic tissues. Here we readdress this issue in human term placenta by performing a robust analysis of allele-specific expression of 22 X-linked genes, including XIST, using 27 SNPs in transcribed regions. We show that XCI is random in human placenta, and that this organ is arranged in relatively large patches of cells with either maternal or paternal inactive X. In addition, this analysis indicated heterogeneous maintenance of gene silencing along the inactive X, which combined with the extensive mosaicism found in placenta, can explain the lack of agreement among previous studies. Our results illustrate the differences of XCI mechanism between humans and mice, and highlight the importance of addressing the issue of imprinted XCI in other species in order to understand the evolution of dosage compensation in placental mammals.


Asunto(s)
Alelos , Cromosomas Humanos X , Expresión Génica , Mosaicismo , Placenta/metabolismo , Inactivación del Cromosoma X , Femenino , Impresión Genómica , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA