Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 118(11): 117401, 2017 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-28368631

RESUMEN

We introduce a nondestructive method to determine the position of randomly distributed semiconductor quantum dots (QDs) integrated in a solid photonic structure. By setting the structure in an oscillating motion, we generate a large stress gradient across the QDs plane. We then exploit the fact that the QDs emission frequency is highly sensitive to the local material stress to map the position of QDs deeply embedded in a photonic wire antenna with an accuracy ranging from ±35 nm down to ±1 nm. In the context of fast developing quantum technologies, this technique can be generalized to different photonic nanostructures embedding any stress-sensitive quantum emitters.

2.
Opt Express ; 24(26): 30149-30163, 2016 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-28059292

RESUMEN

Qudits, d-level quantum systems, have been shown to provide a better resource for quantum key distribution and other Quantum Information protocols. It is customary to generate photonic qudits using more than one degree of freedom of the same photon. In much the same way, multi-qubit states are generated using only a pair of photons and ingenious ways to manipulate more than one degree of freedom independently. In contrast to such costly implementations in terms of quantum resources, we present the controlled generation of two copies of two-qudit states using four photons and a single degree of freedom, transverse momentum. The degree of entanglement within each pair was inferred by exploiting the availability of two copies of the same state, without the need of a full tomographic reconstruction of the states, and both highly-entangled and separable states were generated. We show theoretically that the set of states obtainable using our setup is very diverse, ranging from maximally entangled states of qudits to separable states.

3.
J Fluoresc ; 25(5): 1389-95, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26245454

RESUMEN

We investigate the effects of the excitation power on the photoluminescence spectra of aqueous CdTe/CdS core-shell quantum dots. We have focused our efforts on nanoparticles that are drop-cast on a silicon nitride substrate and dried out. Under such conditions, the emission intensity of these nanocrystals decreases exponentially and the emission center wavelength shifts with the time under laser excitation, displaying a behavior that depends on the excitation power. In the low-power regime a blueshift occurs, which we attribute to photo-oxidation of the quantum dot core. The blueshift can be suppressed by performing the measurements in a nitrogen atmosphere. Under high-power excitation the nanoparticles thermally expand and aggregate, and a transition to a redshift regime is then observed in the photoluminescence spectra. No spectral changes are observed for nanocrystals dispersed in the solvent. Our results show a procedure that can be used to determine the optimal conditions for the use of a given set of colloidal quantum dots as light emitters for photonic crystal optical cavities.


Asunto(s)
Compuestos de Cadmio/química , Luz , Puntos Cuánticos/química , Sulfuros/química , Telurio/química , Agua/química , Mediciones Luminiscentes
4.
Nat Nanotechnol ; 9(2): 106-10, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24362234

RESUMEN

Recent progress in nanotechnology has allowed the fabrication of new hybrid systems in which a single two-level system is coupled to a mechanical nanoresonator. In such systems the quantum nature of a macroscopic degree of freedom can be revealed and manipulated. This opens up appealing perspectives for quantum information technologies, and for the exploration of the quantum-classical boundary. Here we present the experimental realization of a monolithic solid-state hybrid system governed by material strain: a quantum dot is embedded within a nanowire that features discrete mechanical resonances corresponding to flexural vibration modes. Mechanical vibrations result in a time-varying strain field that modulates the quantum dot transition energy. This approach simultaneously offers a large light-extraction efficiency and a large exciton-phonon coupling strength g0. By means of optical and mechanical spectroscopy, we find that g0/2 π is nearly as large as the mechanical frequency, a criterion that defines the ultrastrong coupling regime.

5.
Opt Express ; 19(4): 3715-29, 2011 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-21369197

RESUMEN

Control of spatial quantum correlations in bi-photons is one of the fundamental principles of Quantum Imaging. Up to now, experiments have been restricted to controlling the state of a single bi-photon, by using linear optical elements. In this work we demonstrate experimental control of quantum correlations in a four-photon state comprised of two pairs of photons. Our scheme is based on a high-efficiency parametric downconversion source coupled to a double slit by a variable linear optical setup, in order to obtain spatially encoded qubits. Both entangled and separable pairs have been obtained, by altering experimental parameters. We show how the correlations influence both the interference and diffraction on the double slit.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...