Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biotechnol Lett ; 45(1): 1-12, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36333539

RESUMEN

Essential oils (EOs) extracted from Citrus peels contain 85%-99% volatile components (a mixture of monoterpenes, sesquiterpenes, and their oxygenated derivatives) and 1%-15% non-volatile compounds. Citrus EOs have been long known for their antimicrobial properties, owing to which these EOs have a diverse range of applications. However, no studies have reported the applicability of Citrus EOs for the control of bacterial and yeast contaminants in the bioethanol industry. In this regard, the present review aimed to explore the feasibility of Citrus EOs in this industry. The Web of Science database was searched for reports that described the association of Citrus EOs with the most common microorganisms in the bioethanol industry to evaluate the efficacy of these EOs as antimicrobial agents in this context. The objective of the review was to suggest a novel antimicrobial that could replace sulfuric acid and antibiotics as the commonly used antimicrobial agents in the bioethanol industry. Citrus EOs exhibit antibacterial activity against Lactobacillus, which is the main bacterial genus that contaminates this fermentation process. The present report also confirms the selective action of these EOs on the contaminating yeasts and not/less on ethanol-producing yeast Saccharomyces cerevisiae, however further studies should be conducted to investigate the effects of Citrus EOs in yeast-bacterium co-culture.


Asunto(s)
Antiinfecciosos , Citrus , Aceites Volátiles , Aceites Volátiles/farmacología , Saccharomyces cerevisiae , Antiinfecciosos/farmacología , Monoterpenos , Antibacterianos/farmacología
2.
Chemosphere ; 308(Pt 3): 136468, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36116622

RESUMEN

Glyphosate excessive use is reported in Brazilian citrus orchards, whereas there is speculation about its consequences and the published studies are contradictory and inconclusive. This study aimed to describe the possible harmful effects by simulating glyphosate drift directly to the leaves of ∼4-yr-old citrus plants. As major results, glyphosate doses >360 g ae ha-1 increased the shikimate accumulation in leaves (up to 2.3-times above control), which was increased after a second glyphosate application (up to 3.5-times above control), even after a 240-d interval. Interestingly, shikimate accumulation was occasionally related to a dose-response of the herbicide at specific times; however, the doses had their accumulation peak on determined dates. These accumulations were directly correlated to reduced net photosynthesis even months after the glyphosate sprays. Quantum productivity based on electron transport through the photosystem II and apparent electron transport reductions up to 17% were also observed during the entire experiment course. Similarly, quantum productivity based on CO2 assimilation of glyphosate sprayed leaves decreased up to four times compared to the control after the second application. Glyphosate doses >360 g ae ha-1 increased stomatal conductance and transpiration as the carboxylation efficiency decreased, evidencing a carbon drainage in the Calvin-Benson cycle. These metabolic and physiological disturbances suggest possible photooxidative damage and an increase in photorespiration, which may be a mitigation strategy by the citrus plants to glyphosate effects, by the cost of reducing the citrus fruit yield (up to 57%). It is concluded that glyphosate phytotoxicity damages citrus plants over time due to chronic disturbances in the shikimate pathway and photosynthesis, even when there are no symptoms. This study is the first report to demonstrate how glyphosate damages citrus trees beyond the shikimate pathway.


Asunto(s)
Citrus , Herbicidas , Carbono/farmacología , Dióxido de Carbono/metabolismo , Glicina/análogos & derivados , Herbicidas/toxicidad , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo , Ácido Shikímico/metabolismo , Árboles/metabolismo , Glifosato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA