Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Planta ; 255(3): 57, 2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35113261

RESUMEN

MAIN CONCLUSION: The plastome of Melocactus glaucescens shows unique rearrangements, IR expansion, and unprecedented gene losses in Cactaceae. Our data indicate tRNA import from the cytosol to the plastids in this species. Cactaceae represents one of the richest families in keystone species of arid and semiarid biomes. This family shows various specific features comprehending morphology, anatomy, and metabolism, which allow them to grow under unfavorable environmental conditions. The subfamily Cactoideae contains the most divergence of species, which are highly variable in growth habit and morphology. This subfamily includes the endangered species Melocactus glaucescens (tribe Cereeae), which is a cactus endemic to the biome Caatinga in Brazil. Aiming to analyze the plastid evolution and develop molecular markers, we sequenced and analyzed in detail the plastome of M. glaucescens. Our analyses revealed that the M. glaucescens plastome is the most divergent among the species of the family Cactaceae sequenced so far. We characterized here unique rearrangements, expanded IRs containing an unusual set of genes, and several gene losses. Some genes related to the ndh complex were lost during the plastome evolution, while others have lost their functionality. Additionally, the loss of three tRNA genes (trnA-UGC, trnV-UAC, and trnV-GAC) suggests tRNA import from the cytosol to the plastids in M. glaucescens. Moreover, we identified high gene divergence, several putative positive signatures, and possible unique RNA-editing sites. Furthermore, we mapped 169 SSRs in the plastome of M. glaucescens, which are helpful to access the genetic diversity of natural populations and conservation strategies. Finally, our data provide new insights into the evolution of plastids in Cactaceae, which is an outstanding lineage adapted to extreme environmental conditions and a notorious example of the atypical evolution of plastomes.


Asunto(s)
Cactaceae , Evolución Molecular , Cactaceae/genética , Filogenia , Plastidios/genética , ARN de Transferencia/genética
2.
World J Microbiol Biotechnol ; 33(4): 81, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28357640

RESUMEN

A sustainable alternative to improve yield and the nutritive value of forage is the use of plant growth-promoting bacteria (PGPB) that release nutrients, synthesize plant hormones and protect against phytopathogens (among other mechanisms). Azospirillum genus is considered an important PGPB, due to the beneficial effects observed when inoculated in several plants. The aim of this study was to evaluate the diversity of new Azospirillum isolates and select bacteria according to the plant growth promotion ability in three forage species from the Brazilian Pantanal floodplain: Axonopus purpusii, Hymenachne amplexicaulis and Mesosetum chaseae. The identification of bacterial isolates was performed using specific primers for Azospirillum in PCR reactions and partial sequencing of the 16S rRNA and nifH genes. The isolates were evaluated in vitro considering biological nitrogen fixation (BNF) and indole-3-acetic acid (IAA) production. Based on the results of BNF and IAA, selected isolates and two reference strains were tested by inoculation. At 31 days after planting the plant height, shoot dry matter, shoot protein content and root volume were evaluated. All isolates were able to fix nitrogen and produce IAA, with values ranging from 25.86 to 51.26 mg N mL-1 and 107-1038 µmol L-1, respectively. The inoculation of H. amplexicaulis and A. purpusii increased root volume and shoot dry matter. There were positive effects of Azospirillum inoculation on Mesosetum chaseae regarding plant height, shoot dry matter and root volume. Isolates MAY1, MAY3 and MAY12 were considered promising for subsequent inoculation studies in field conditions.


Asunto(s)
Azospirillum/clasificación , Azospirillum/aislamiento & purificación , Poaceae/microbiología , Azospirillum/genética , Azospirillum/crecimiento & desarrollo , ADN de Hongos/análisis , Ácidos Indolacéticos/metabolismo , Fijación del Nitrógeno , Filogenia , Proteínas de Plantas/análisis , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Poaceae/crecimiento & desarrollo , Análisis de Secuencia de ADN
3.
Environ Microbiol ; 18(8): 2343-56, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-25923055

RESUMEN

Molecular mechanisms of plant recognition and colonization by diazotrophic bacteria are barely understood. Herbaspirillum seropedicae is a Betaproteobacterium capable of colonizing epiphytically and endophytically commercial grasses, to promote plant growth. In this study, we utilized RNA-seq to compare the transcriptional profiles of planktonic and maize root-attached H. seropedicae SmR1 recovered 1 and 3 days after inoculation. The results indicated that nitrogen metabolism was strongly activated in the rhizosphere and polyhydroxybutyrate storage was mobilized in order to assist the survival of H. seropedicae during the early stages of colonization. Epiphytic cells showed altered transcription levels of several genes associated with polysaccharide biosynthesis, peptidoglycan turnover and outer membrane protein biosynthesis, suggesting reorganization of cell wall envelope components. Specific methyl-accepting chemotaxis proteins and two-component systems were differentially expressed between populations over time, suggesting deployment of an extensive bacterial sensory system for adaptation to the plant environment. An insertion mutation inactivating a methyl-accepting chemosensor induced in planktonic bacteria, decreased chemotaxis towards the plant and attachment to roots. In summary, analysis of mutant strains combined with transcript profiling revealed several molecular adaptations that enable H. seropedicae to sense the plant environment, attach to the root surface and survive during the early stages of maize colonization.


Asunto(s)
Herbaspirillum/crecimiento & desarrollo , Zea mays/microbiología , Aclimatación , Adaptación Fisiológica , Herbaspirillum/genética , Herbaspirillum/aislamiento & purificación , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Rizosfera , Microbiología del Suelo , Zea mays/crecimiento & desarrollo
4.
BMC Microbiol ; 12: 98, 2012 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-22672506

RESUMEN

BACKGROUND: Herbaspirillum rubrisubalbicans was first identified as a bacterial plant pathogen, causing the mottled stripe disease in sugarcane. H. rubrisubalbicans can also associate with various plants of economic interest in a non pathogenic manner. RESULTS: A 21 kb DNA region of the H. rubrisubalbicans genome contains a cluster of 26 hrp/hrc genes encoding for the type three secretion system (T3SS) proteins. To investigate the contribution of T3SS to the plant-bacterial interaction process we generated mutant strains of H. rubrisubalbicans M1 carrying a Tn5 insertion in both the hrcN and hrpE genes. H. rubrisulbalbicans hrpE and hrcN mutant strains of the T3SS system failed to cause the mottled stripe disease in the sugarcane susceptible variety B-4362. These mutant strains also did not produce lesions on Vigna unguiculata leaves. Oryza sativa and Zea mays colonization experiments showed that mutations in hrpE and hrcN genes reduced the capacity of H. rubrisulbalbicans to colonize these plants, suggesting that hrpE and hrcN genes are involved in the endophytic colonization. CONCLUSIONS: Our results indicate that the T3SS of H. rubrisubalbicans is necessary for the development of the mottled stripe disease and endophytic colonization of rice.


Asunto(s)
Sistemas de Secreción Bacterianos/genética , Endófitos/patogenicidad , Herbaspirillum/patogenicidad , Interacciones Huésped-Patógeno , Proteínas de Transporte de Membrana/genética , Enfermedades de las Plantas/microbiología , Poaceae/microbiología , Elementos Transponibles de ADN , ADN Bacteriano/química , ADN Bacteriano/genética , Endófitos/genética , Eliminación de Gen , Herbaspirillum/genética , Datos de Secuencia Molecular , Familia de Multigenes , Mutagénesis Insercional , Análisis de Secuencia de ADN , Factores de Virulencia/genética
5.
FEMS Microbiol Ecol ; 80(2): 441-51, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22268687

RESUMEN

Herbaspirillum rubrisubalbicans M1 causes the mottled stripe disease in sugarcane cv. B-4362. Inoculation of this cultivar with Herbaspirillum seropedicae SmR1 does not produce disease symptoms. A comparison of the genomic sequences of these closely related species may permit a better understanding of contrasting phenotype such as endophytic association and pathogenic life style. To achieve this goal, we constructed suppressive subtractive hybridization (SSH) libraries to identify DNA fragments present in one species and absent in the other. In a parallel approach, partial genomic sequence from H. rubrisubalbicans M1 was directly compared in silico with the H. seropedicae SmR1 genome. The genomic differences between the two organisms revealed by SSH suggested that lipopolysaccharide and adhesins are potential molecular factors involved in the different phenotypic behavior. The cluster wss probably involved in cellulose biosynthesis was found in H. rubrisubalbicans M1. Expression of this gene cluster was increased in H. rubrisubalbicans M1 cells attached to the surface of maize root, and knockout of wssD gene led to decrease in maize root surface attachment and endophytic colonization. The production of cellulose could be responsible for the maize attachment pattern of H. rubrisubalbicans M1 that is capable of outcompeting H. seropedicae SmR1.


Asunto(s)
Herbaspirillum/genética , Secuencia de Bases , Genómica , Herbaspirillum/clasificación , Herbaspirillum/metabolismo , Hibridación Genética , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico/métodos , Raíces de Plantas/microbiología , Análisis de Secuencia de ADN , Zea mays/microbiología
6.
Environ Microbiol ; 12(8): 2233-44, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21966916

RESUMEN

In this study we disrupted two Herbaspirillum seropedicae genes, rfbB and rfbC, responsible for rhamnose biosynthesis and its incoporation into LPS. GC-MS analysis of the H. seropedicae wild-type strain LPS oligosaccharide chain showed that rhamnose, glucose and N-acetyl glucosamine are the predominant monosaccharides, whereas rhamnose and N-acetyl glucosamine were not found in the rfbB and rfbC strains. The electrophoretic pattern of the mutants LPS was drastically altered when compared with the wild type. Knockout of rfbB or rfbC increased the sensitivity towards SDS, polymyxin B sulfate and salicylic acid. The mutants attachment capacity to maize root surface plantlets was 100-fold lower than the wild type. Interestingly, the wild-type capacity to attach to maize roots was reduced to a level similar to that of the mutants when the assay was performed in the presence of isolated wild-type LPS, glucosamine or N-acetyl glucosamine. The mutant strains were also significantly less efficient in endophytic colonization of maize. Expression analysis indicated that the rfbB gene is upregulated by naringenin, apigenin and CaCl(2). Together, the results suggest that intact LPS is required for H. seropedicae attachment to maize root and internal colonization of plant tissues.


Asunto(s)
Genes Bacterianos , Herbaspirillum/genética , Ramnosa/biosíntesis , Zea mays/microbiología , Adhesión Bacteriana , Biopelículas , ADN de Forma A/genética , Regulación Bacteriana de la Expresión Génica , Técnicas de Inactivación de Genes , Glucosamina/farmacología , Herbaspirillum/fisiología , Lipopolisacáridos/biosíntesis , Lipopolisacáridos/fisiología , Mutación , Fenotipo , Raíces de Plantas/microbiología , Polimixina B/farmacología , Ramnosa/fisiología , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...