Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 459, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627335

RESUMEN

Models of object recognition have mostly focused upon the hierarchical processing of objects from local edges up to more complex shape features. An alternative strategy that might be involved in pattern recognition centres around coarse-level contrast features. In humans and monkeys, the use of such features is most documented in the domain of face perception. Given prior suggestions that, generally, rodents might rely upon contrast features for object recognition, we hypothesized that they would pick up the typical contrast features relevant for face detection. We trained rats in a face-nonface categorization task with stimuli previously used in computer vision and tested for generalization with new, unseen stimuli by including manipulations of the presence and strength of a range of contrast features previously identified to be relevant for face detection. Although overall generalization performance was low, it was significantly modulated by contrast features. A model taking into account the summed strength of contrast features predicted the variation in accuracy across stimuli. Finally, with deep neural networks, we further investigated and quantified the performance and representations of the animals. The findings suggest that rat behaviour in visual pattern recognition tasks is partially explained by contrast feature processing.


Asunto(s)
Reconocimiento Facial , Visión Ocular , Humanos , Ratas , Animales , Percepción Visual , Reconocimiento Visual de Modelos , Redes Neurales de la Computación , Estimulación Luminosa
2.
Front Neurosci ; 16: 838683, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35546874

RESUMEN

In day-to-day dynamic activities where sensory input is abundant, stimulus representations in the visual cortex are modulated based on their attentional priority. Several studies have established the top-down role of a fronto-parietal dorsal attention network in selective attention. In the current study, we aimed to investigate whether activity of subregions of this network and the visual cortex is modulated by feature-based attentional weighting, and if so, whether their timecourses of activity are correlated. To this end, we analyzed fMRI data of 28 healthy subjects, who performed a feature-based go/no-go task. Participants had to attend to one or two colored streams of sinusoidal gratings and respond to each grating in the task-relevant stream(s) except to a single non-target grating. Univariate and multivariate fMRI results indicated that activity in bilateral fronto-parietal (frontal eye fields, intraparietal sulcus and superior parietal lobe) and visual (V1-V4, lateral occipital cortex and fusiform gyrus) regions was modulated by selecting one instead of attending to two gratings. Functional connectivity was not significantly different between fronto-parietal and visual regions when attending to one as opposed to two gratings. Our study demonstrates that activity in subregions of both the fronto-parietal and visual cortex is modified by feature-based attentional weighting.

3.
Sci Rep ; 12(1): 3772, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35260603

RESUMEN

The cognitive connection between the senses of touch and vision is probably the best-known case of multimodality. Recent discoveries suggest that the mapping between both senses is learned rather than innate. This evidence opens the door to a dynamic multimodality that allows individuals to adaptively develop within their environment. By mimicking this aspect of human learning, we propose a new multimodal mechanism that allows artificial cognitive systems (ACS) to quickly adapt to unforeseen perceptual anomalies generated by the environment or by the system itself. In this context, visual recognition systems have advanced remarkably in recent years thanks to the creation of large-scale datasets together with the advent of deep learning algorithms. However, this has not been the case for the haptic modality, where the lack of two-handed dexterous datasets has limited the ability of learning systems to process the tactile information of human object exploration. This data imbalance hinders the creation of synchronized datasets that would enable the development of multimodality in ACS during object exploration. In this work, we use a multimodal dataset recently generated from tactile sensors placed on a collection of objects that capture haptic data from human manipulation, together with the corresponding visual counterpart. Using this data, we create a multimodal learning transfer mechanism capable of both detecting sudden and permanent anomalies in the visual channel and maintaining visual object recognition performance by retraining the visual mode for a few minutes using haptic information. Our proposal for perceptual awareness and self-adaptation is of noteworthy relevance as can be applied by any system that satisfies two very generic conditions: it can classify each mode independently and is provided with a synchronized multimodal data set.


Asunto(s)
Percepción del Tacto , Cognición , Humanos , Reconocimiento en Psicología , Tacto , Percepción Visual
4.
J Vis ; 19(14): 9, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31826254

RESUMEN

Rodents have become a popular model in vision science. It is still unclear how vision in rodents relates to primate vision when it comes to complex visual tasks. Here we report on the results of training rats in a face-categorization and generalization task. Additionally, the Bubbles paradigm is used to determine the behavioral templates of the animals. We found that rats are capable of face categorization and can generalize to previously unseen exemplars. Performance is affected-but remains above chance-by stimulus modifications such as upside-down and contrast-inverted stimuli. The behavioral templates of the rats overlap with a pixel-based template, with a bias toward the upper left parts of the stimuli. Together, these findings significantly expand the evidence about the extent to which rats learn complex visual-categorization tasks.


Asunto(s)
Conducta Animal/fisiología , Reconocimiento Facial/fisiología , Animales , Generalización Psicológica , Aprendizaje , Masculino , Ratas , Ratas Long-Evans
5.
Sci Rep ; 9(1): 13201, 2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-31519992

RESUMEN

A large number of neuroimaging studies have shown that information about object category can be decoded from regions of the ventral visual pathway. One question is how this information might be functionally exploited in the brain. In an attempt to help answer this question, some studies have adopted a neural distance-to-bound approach, and shown that distance to a classifier decision boundary through neural activation space can be used to predict reaction times (RT) on animacy categorization tasks. However, these experiments have not controlled for possible visual confounds, such as shape, in their stimulus design. In the present study we sought to determine whether, when animacy and shape properties are orthogonal, neural distance in low- and high-level visual cortex would predict categorization RTs, and whether a combination of animacy and shape distance might predict RTs when categories crisscrossed the two stimulus dimensions, and so were not linearly separable. In line with previous results, we found that RTs correlated with neural distance, but only for animate stimuli, with similar, though weaker, asymmetric effects for the shape and crisscrossing tasks. Taken together, these results suggest there is potential to expand the neural distance-to-bound approach to other divisions beyond animacy and object category.


Asunto(s)
Neuroimagen/métodos , Tiempo de Reacción , Adulto , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Experimentación Humana no Terapéutica , Estimulación Luminosa , Corteza Visual/fisiología
6.
Sci Rep ; 8(1): 12943, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30154471

RESUMEN

Humans are highly skilled in social reasoning, e.g., inferring thoughts of others. This mentalizing ability systematically recruits brain regions such as Temporo-Parietal Junction (TPJ), Precuneus (PC) and medial Prefrontal Cortex (mPFC). Further, posterior mPFC is associated with allocentric mentalizing and conflict monitoring while anterior mPFC is associated with self-reference (egocentric) processing. Here we extend this work to how we reason not just about what one person thinks but about the abstract shared social norm. We apply functional magnetic resonance imaging to investigate neural representations while participants judge the social congruency between emotional auditory utterances in relation to visual scenes according to how 'most people' would perceive it. Behaviorally, judging according to a social norm increased the similarity of response patterns among participants. Multivoxel pattern analysis revealed that social congruency information was not represented in visual and auditory areas, but was clear in most parts of the mentalizing network: TPJ, PC and posterior (but not anterior) mPFC. Furthermore, interindividual variability in anterior mPFC representations was inversely related to the behavioral ability to adjust to the social norm. Our results suggest that social norm inferencing is associated with a distributed and partially individually specific representation of social congruency in the mentalizing network.


Asunto(s)
Imagen por Resonancia Magnética , Vías Nerviosas , Lóbulo Parietal , Corteza Prefrontal , Normas Sociales , Adulto , Femenino , Humanos , Masculino , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología , Lóbulo Parietal/diagnóstico por imagen , Lóbulo Parietal/fisiología , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/fisiología , Teoría de la Mente/fisiología
7.
Neuropsychologia ; 105: 153-164, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28619529

RESUMEN

A dominant view in the cognitive neuroscience of object vision is that regions of the ventral visual pathway exhibit some degree of category selectivity. However, recent findings obtained with multivariate pattern analyses (MVPA) suggest that apparent category selectivity in these regions is dependent on more basic visual features of stimuli. In which case a rethinking of the function and organization of the ventral pathway may be in order. We suggest that addressing this issue of functional specificity requires clear coding hypotheses, about object category and visual features, which make contrasting predictions about neuroimaging results in ventral pathway regions. One way to differentiate between categorical and featural coding hypotheses is to test for residual categorical effects: effects of category selectivity that cannot be accounted for by visual features of stimuli. A strong method for testing these effects, we argue, is to make object category and target visual features orthogonal in stimulus design. Recent studies that adopt this approach support a feature-based categorical coding hypothesis according to which regions of the ventral stream do indeed code for object category, but in a format at least partially based on the visual features of stimuli.


Asunto(s)
Mapeo Encefálico , Reconocimiento Visual de Modelos/fisiología , Corteza Visual/fisiología , Vías Visuales/fisiología , Humanos , Estimulación Luminosa , Corteza Visual/diagnóstico por imagen , Vías Visuales/diagnóstico por imagen
8.
J Vis ; 16(6): 13, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27096945

RESUMEN

During perceptual learning the visual representations in the brain are altered, but these changes' causal role has not yet been fully characterized. We used transcranial direct current stimulation (tDCS) to investigate the role of higher visual regions in lateral occipital cortex (LO) in perceptual learning with complex objects. We also investigated whether object learning is dependent on the relevance of the objects for the learning task. Participants were trained in two tasks: object recognition using a backward masking paradigm and an orientation judgment task. During both tasks, an object with a red line on top of it were presented in each trial. The crucial difference between both tasks was the relevance of the object: the object was relevant for the object recognition task, but not for the orientation judgment task. During training, half of the participants received anodal tDCS stimulation targeted at the lateral occipital cortex (LO). Afterwards, participants were tested on how well they recognized the trained objects, the irrelevant objects presented during the orientation judgment task and a set of completely new objects. Participants stimulated with tDCS during training showed larger improvements of performance compared to participants in the sham condition. No learning effect was found for the objects presented during the orientation judgment task. To conclude, this study suggests a causal role of LO in relevant object learning, but given the rather low spatial resolution of tDCS, more research on the specificity of this effect is needed. Further, mere exposure is not sufficient to train object recognition in our paradigm.


Asunto(s)
Aprendizaje/fisiología , Lóbulo Occipital/fisiología , Estimulación Transcraneal de Corriente Directa , Percepción Visual/fisiología , Adolescente , Adulto , Femenino , Humanos , Masculino , Orientación/fisiología , Estimulación Luminosa , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...