Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Prenat Diagn ; 42(12): 1481-1483, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36217303

RESUMEN

AIMS: A couple were referred for prenatal genetic testing at 31 weeks' gestation due to the presence of mild polyhydramnios and multiple central nervous system (CNS) abnormalities, including borderline ventriculomegaly, possible delayed sulcation, an enlarged cisterna magna and a small area of calcification around the posterior horns. Testing was initiated to identify any underlying genetic cause. MATERIALS AND METHODS: Rapid trio exome sequencing (ES) was performed on DNA extracted from parental blood samples and amniotic fluid. RESULTS: A pathogenic homozygous nonsense variant in KLHL7 (NM_001031710.2) associated with PERCHING syndrome (#617055) was identified. CONCLUSION: Whilst there are detailed descriptions of the many postnatal phenotypes seen in these patients, there are few reports of features identified during pregnancy. This report is the first published prenatal diagnosis of PERCHING syndrome and provides further information on the associated fetal phenotypes.


Asunto(s)
Malformaciones del Sistema Nervioso , Polihidramnios , Embarazo , Humanos , Femenino , Ultrasonografía Prenatal , Diagnóstico Prenatal , Polihidramnios/genética , Edad Gestacional , Líquido Amniótico , Autoantígenos
2.
Am J Med Genet A ; 185(1): 15-25, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33029936

RESUMEN

Biallelic mutations in SNORD118, encoding the small nucleolar RNA U8, cause leukoencephalopathy with calcifications and cysts (LCC). Given the difficulty in interpreting the functional consequences of variants in nonprotein encoding genes, and the high allelic polymorphism across SNORD118 in controls, we set out to provide a description of the molecular pathology and clinical spectrum observed in a cohort of patients with LCC. We identified 64 affected individuals from 56 families. Age at presentation varied from 3 weeks to 67 years, with disease onset after age 40 years in eight patients. Ten patients had died. We recorded 44 distinct, likely pathogenic, variants in SNORD118. Fifty two of 56 probands were compound heterozygotes, with parental consanguinity reported in only three families. Forty nine of 56 probands were either heterozygous (46) or homozygous (three) for a mutation involving one of seven nucleotides that facilitate a novel intramolecular interaction between the 5' end and 3' extension of precursor-U8. There was no obvious genotype-phenotype correlation to explain the marked variability in age at onset. Complementing recently published functional analyses in a zebrafish model, these data suggest that LCC most often occurs due to combinatorial severe and milder mutations, with the latter mostly affecting 3' end processing of precursor-U8.


Asunto(s)
Calcinosis/genética , Estudios de Asociación Genética , Leucoencefalopatías/genética , ARN Nucleolar Pequeño/genética , Adolescente , Adulto , Anciano , Animales , Calcinosis/complicaciones , Calcinosis/patología , Niño , Preescolar , Consanguinidad , Modelos Animales de Enfermedad , Femenino , Heterocigoto , Humanos , Lactante , Recién Nacido , Leucoencefalopatías/complicaciones , Leucoencefalopatías/patología , Masculino , Persona de Mediana Edad , Patología Molecular , Adulto Joven , Pez Cebra/genética
3.
Genet Med ; 22(1): 124-131, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31316167

RESUMEN

PURPOSE: Congenital contractural arachnodactyly (CCA) is an autosomal dominant connective tissue disorder manifesting joint contractures, arachnodactyly, crumpled ears, and kyphoscoliosis as main features. Due to its rarity, rather aspecific clinical presentation, and overlap with other conditions including Marfan syndrome, the diagnosis is challenging, but important for prognosis and clinical management. CCA is caused by pathogenic variants in FBN2, encoding fibrillin-2, but locus heterogeneity has been suggested. We designed a clinical scoring system and diagnostic criteria to support the diagnostic process and guide molecular genetic testing. METHODS: In this retrospective study, we assessed 167 probands referred for FBN2 analysis and classified them into a FBN2-positive (n = 44) and FBN2-negative group (n = 123) following molecular analysis. We developed a 20-point weighted clinical scoring system based on the prevalence of ten main clinical characteristics of CCA in both groups. RESULTS: The total score was significantly different between the groups (P < 0.001) and was indicative for classifying patients into unlikely CCA (total score <7) and likely CCA (total score ≥7) groups. CONCLUSIONS: Our clinical score is helpful for clinical guidance for patients suspected to have CCA, and provides a quantitative tool for phenotyping in research settings.


Asunto(s)
Aracnodactilia/diagnóstico , Contractura/diagnóstico , Fibrilina-2/genética , Análisis de Secuencia de ADN/métodos , Aracnodactilia/genética , Niño , Contractura/genética , Diagnóstico Diferencial , Diagnóstico Precoz , Femenino , Pruebas Genéticas , Humanos , Masculino , Síndrome de Marfan/diagnóstico , Síndrome de Marfan/genética , Fenotipo , Estudios Retrospectivos , Sensibilidad y Especificidad
5.
Clin Genet ; 95(6): 693-703, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30859559

RESUMEN

Noonan syndrome (NS) is characterised by distinctive facial features, heart defects, variable degrees of intellectual disability and other phenotypic manifestations. Although the mode of inheritance is typically dominant, recent studies indicate LZTR1 may be associated with both dominant and recessive forms. Seeking to describe the phenotypic characteristics of LZTR1-associated NS, we searched for likely pathogenic variants using two approaches. First, scrutiny of exomes from 9624 patients recruited by the Deciphering Developmental Disorders (DDDs) study uncovered six dominantly-acting mutations (p.R97L; p.Y136C; p.Y136H, p.N145I, p.S244C; p.G248R) of which five arose de novo, and three patients with compound-heterozygous variants (p.R210*/p.V579M; p.R210*/p.D531N; c.1149+1G>T/p.R688C). One patient also had biallelic loss-of-function mutations in NEB, consistent with a composite phenotype. After removing this complex case, analysis of human phenotype ontology terms indicated significant phenotypic similarities (P = 0.0005), supporting a causal role for LZTR1. Second, targeted sequencing of eight unsolved NS-like cases identified biallelic LZTR1 variants in three further subjects (p.W469*/p.Y749C, p.W437*/c.-38T>A and p.A461D/p.I462T). Our study strengthens the association of LZTR1 with NS, with de novo mutations clustering around the KT1-4 domains. Although LZTR1 variants explain ~0.1% of cases across the DDD cohort, the gene is a relatively common cause of unsolved NS cases where recessive inheritance is suspected.


Asunto(s)
Exoma , Síndrome de Noonan/genética , Factores de Transcripción/genética , Adolescente , Alelos , Niño , Preescolar , Estudios de Cohortes , Femenino , Ontología de Genes , Genes Dominantes , Genes Recesivos , Heterocigoto , Humanos , Lactante , Masculino , Mutación , Síndrome de Noonan/fisiopatología , Linaje , Fenotipo
7.
Am J Hum Genet ; 102(6): 1195-1203, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29861108

RESUMEN

Next-generation sequencing is a powerful tool for the discovery of genes related to neurodevelopmental disorders (NDDs). Here, we report the identification of a distinct syndrome due to de novo or inherited heterozygous mutations in Tousled-like kinase 2 (TLK2) in 38 unrelated individuals and two affected mothers, using whole-exome and whole-genome sequencing technologies, matchmaker databases, and international collaborations. Affected individuals had a consistent phenotype, characterized by mild-borderline neurodevelopmental delay (86%), behavioral disorders (68%), severe gastro-intestinal problems (63%), and facial dysmorphism including blepharophimosis (82%), telecanthus (74%), prominent nasal bridge (68%), broad nasal tip (66%), thin vermilion of the upper lip (62%), and upslanting palpebral fissures (55%). Analysis of cell lines from three affected individuals showed that mutations act through a loss-of-function mechanism in at least two case subjects. Genotype-phenotype analysis and comparison of computationally modeled faces showed that phenotypes of these and other individuals with loss-of-function variants significantly overlapped with phenotypes of individuals with other variant types (missense and C-terminal truncating). This suggests that haploinsufficiency of TLK2 is the most likely underlying disease mechanism, leading to a consistent neurodevelopmental phenotype. This work illustrates the power of international data sharing, by the identification of 40 individuals from 26 different centers in 7 different countries, allowing the identification, clinical delineation, and genotype-phenotype evaluation of a distinct NDD caused by mutations in TLK2.


Asunto(s)
Estudios de Asociación Genética , Patrón de Herencia/genética , Mutación con Pérdida de Función/genética , Trastornos del Neurodesarrollo/genética , Proteínas Quinasas/genética , Adolescente , Adulto , Secuencia de Bases , Línea Celular , Niño , Preescolar , Facies , Femenino , Humanos , Lactante , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Translocación Genética , Adulto Joven
8.
Eur J Med Genet ; 60(2): 130-135, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27915094

RESUMEN

Loss of function mutations in CTNNB1 have been reported in individuals with intellectual disability [MIM #615075] associated with peripheral spasticity, microcephaly and central hypotonia, suggesting a recognisable phenotype associated with haploinsufficiency for this gene. Trio based whole exome sequencing via the Deciphering Developmental Disorders (DDD) study has identified eleven further individuals with de novo loss of function mutations in CTNNB1. Here we report detailed phenotypic information on ten of these. We confirm the features that have been previously described and further delineate the skin and hair findings, including fair skin and fair and sparse hair with unusual patterning.


Asunto(s)
Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , Microcefalia/genética , beta Catenina/genética , Adolescente , Adulto , Niño , Preescolar , Discapacidades del Desarrollo/fisiopatología , Exoma/genética , Femenino , Haploinsuficiencia/genética , Humanos , Discapacidad Intelectual/fisiopatología , Masculino , Microcefalia/fisiopatología , Mutación , Fenotipo , Análisis de Secuencia de ADN
9.
PLoS One ; 6(4): e18953, 2011 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-21533089

RESUMEN

Genomic imprinting is a form of gene dosage regulation in which a gene is expressed from only one of the alleles, in a manner dependent on the parent of origin. The mechanisms governing imprinted gene expression have been investigated in detail and have greatly contributed to our understanding of genome regulation in general. Both DNA sequence features, such as CpG islands, and epigenetic features, such as DNA methylation and non-coding RNAs, play important roles in achieving imprinted expression. However, the relative importance of these factors varies depending on the locus in question. Defining the minimal features that are absolutely required for imprinting would help us to understand how imprinting has evolved mechanistically. Imprinted retrogenes are a subset of imprinted loci that are relatively simple in their genomic organisation, being distinct from large imprinting clusters, and have the potential to be used as tools to address this question. Here, we compare the repeat element content of imprinted retrogene loci with non-imprinted controls that have a similar locus organisation. We observe no significant differences that are conserved between mouse and human, suggesting that the paucity of SINEs and relative abundance of LINEs at imprinted loci reported by others is not a sequence feature universally required for imprinting.


Asunto(s)
Impresión Genómica , Elementos de Nucleótido Esparcido Largo/genética , Elementos de Nucleótido Esparcido Corto/genética , Alelos , Animales , Metilación de ADN , Humanos , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...