Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 211: 226-234, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30077102

RESUMEN

Plants are occasionally exposed to environmental perturbations that limit their growth. One of these perturbations is the exposure to and interaction with various nanoparticles (NPs) that are discarded continuously into the environment. Hitherto, no study has been carried out evaluating the effects of iron oxide (γ-Fe2O3) NPs on soybean growth and lignin formation, as proposed herein. For comparative purposes, we also submitted soybean plants to non-nanoparticulate iron (FeCl3). Exposure of the plants to γ-Fe2O3 NPs increased cell wall-bound peroxidase (POD) activity but decreased phenylalanine ammonia lyase (PAL) activity due, probably, to the negative feedback of accumulated phenolic compounds. In contrast, FeCl3 decreased cell wall-bound POD activity. Both γ-Fe2O3 NPs and FeCl3 increased the lignin content of roots and stems. However, significant lignin-induced growth inhibition was noted only in stems after exposure to NPs, possibly due to changes in lignin monomer composition. In this case, γ-Fe2O3 NPs decreased the guaiacyl monomer content of roots but increased that of stems. The high levels of monomer guaiacyl in stems resulting from the action of γ-Fe2O3 NPs decreased syringyl/guaiacyl ratios, generating more highly cross-linked lignin followed by the stiffening of the cell wall and growth inhibition. In contrast, FeCl3 increased the contents of monomers p-hydroxyphenyl and syringyl in roots. The observed increase in the syringyl/guaiacyl ratio in plant roots submitted to FeCl3 agrees with the lack of effect on growth, due to the formation of a less condensed lignin. In brief, we here describe that γ-Fe2O3 NPs and FeCl3 act differently in soybean plants.


Asunto(s)
Compuestos Férricos/química , Glycine max/efectos de los fármacos , Lignina/química , Nanopartículas/química
2.
ScientificWorldJournal ; 2013: 134237, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24348138

RESUMEN

L-3,4-Dihydroxyphenylalanine (L-DOPA) is a known allelochemical exuded from the roots of velvet bean (Mucuna pruriens L. Fabaceae). In the current work, we analyzed the effects of L-DOPA on the growth, the activities of phenylalanine ammonia-lyase (PAL), tyrosine ammonia-lyase (TAL), and peroxidase (POD), and the contents of phenylalanine, tyrosine, and lignin in maize (Zea mays) roots. Three-day-old seedlings were cultivated in nutrient solution with or without 0.1 to 2.0 mM L-DOPA in a growth chamber (25°C, light/dark photoperiod of 12/12, and photon flux density of 280 µ mol m(-2) s(-1)) for 24 h. The results revealed that the growth (length and weight) of the roots, the PAL, TAL, and soluble and cell wall-bound POD activities decreased, while phenylalanine, tyrosine, and lignin contents increased after L-DOPA exposure. Together, these findings showed the susceptibility of maize to L-DOPA. In brief, these results suggest that the inhibition of PAL and TAL can accumulate phenylalanine and tyrosine, which contribute to enhanced lignin deposition in the cell wall followed by a reduction of maize root growth.


Asunto(s)
Levodopa/farmacología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/fisiología , Plantones/efectos de los fármacos , Zea mays/efectos de los fármacos , Zea mays/fisiología , Levodopa/química , Lignina/metabolismo
3.
J Chem Ecol ; 37(8): 891-8, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21710366

RESUMEN

The non-protein amino acid, L-3,4-dihydroxyphenylalanine (L-DOPA), is the main allelochemical released from the roots of velvetbean and affects seed germination and root growth of several plant species. In the work presented here, we evaluated, in soybean roots, the effects of L-DOPA on the following: polyphenol oxidase (PPO), superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities; superoxide anion (O·-2), hydrogen peroxide (H(2)O(2)), and melanin contents; and lipid peroxidation. To this end, 3-day-old seedlings were cultivated in half-strength Hoagland's solution (pH 6.0), with or without 0.1 to 1.0 mM L-DOPA in a growth chamber (at 25°C, with a light/dark photoperiod of 12/12 hr and a photon flux density of 280 µmol m(-2) s(-1)) for 24 hr. The results showed that L-DOPA increased the PPO activity and, further, the melanin content. The activities of SOD and POD increased, but CAT activity decreased after the chemical exposure. The contents of reactive oxygen species (ROS), such as O·-2 and H(2)O(2), and the levels of lipid peroxidation significantly decreased under all concentrations of L-DOPA tested. These results suggest that L-DOPA was absorbed by the soybean roots and metabolized to melanin. It was concluded that the reduction in the O·-2 and H(2)O(2) contents and lipid peroxidation in soybean roots was due to the enhanced SOD and POD activities and thus a possible antioxidant role of L-DOPA.


Asunto(s)
Glycine max/enzimología , Glycine max/metabolismo , Levodopa/metabolismo , Melaninas/metabolismo , Raíces de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Catalasa/metabolismo , Catecol Oxidasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Peroxidación de Lípido , Peroxidasa/metabolismo , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...