RESUMEN
Lactose intolerance affects approximately 65% of the global adult population, leading to the demand for lactose-free products. The enzyme ß-galactosidase (ßG) is commonly used in the industry to produce such products, but its recovery after lactose hydrolysis is challenging. In this scenario, the study aims to encapsulate ßG within capsules, varying in dimensions and wall materials, to ensure their suitability for efficient industrial recovery. The enzyme ßG was encapsulated through ionic gelation using alginate and its blends with pectin, maltodextrin, starch, or whey protein as wall materials. The capsules produced underwent evaluation for encapsulation efficiency, release profiles, activity of the ßG enzyme, and the decline in enzyme activity when reused over multiple cycles. Alginate at 5% wt/vol concentrations, alone or combined with polymers such as maltodextrin, starch, or whey protein, achieved encapsulation efficiencies of approximately 98%, 98%, 80%, and 88%, respectively. The corresponding enzyme recovery rates were 34%, 19%, 31%, and 48%. Capsules made with an alginate-pectin blend exhibited no significant hydrolysis and maintained an encapsulation efficiency of 79%. Encapsulation with alginate alone demonstrated on poor retention of enzyme activity, showing a loss of 74% after just 4 cycles of reuse. Conversely, when alginate was mixed with starch or whey protein concentrate, the loss of enzyme activity was less than 40% after 4 reuses. These results highlight the benefits of combining encapsulation materials to improve enzyme recovery and reuse, offering potential economic advantages for the dairy industry.
RESUMEN
Pediococcus pentosaceus ST65ACC is a bacteriocinogenic lactic acid bacteria (LAB) isolated from Brazilian artisanal cheese that is capable of inhibiting different food pathogens, mainly Listeria monocytogenes. The production of bacteriocins can be influenced by several growth conditions, such as temperature, pH, and medium composition. This study aimed to evaluate the effect of different culture media on the production of bacteriocins and antimicrobial activity of P. pentosaceus ST65ACC on L. monocytogenes Scott A. The strains were inoculated alone and in coculture in four different media: BHI broth, MRS broth, meat broth, and reconstituted skim milk (RSM) 10% (w/v). The culture media were then incubated at 37 °C for 96 h, and count analysis, pH measurement, and bacteriocin production were performed at 0, 24, 48, 72 and 96 h. L. monocytogenes was inhibited to nondetectable levels in coculture with P. pentosaceus ST65ACC in MRS broth within 96 h, consistent with the high production of bacteriocin throughout the analysis period (3,200-12,800 AU/mL). However, lower inhibitory activities of P. pentosaceus ST65ACC on L. monocytogenes Scott A were recorded in BHI, RSM, and meat broth, with low or no production of bacteriocins at the analyzed times. The composition of these culture media may have repressed the production and activity of bacteriocins and, consequently, the antagonist activity of P. pentosaceus ST65ACC on L. monocytogenes Scott A. The results showed that the antimicrobial activity was more effective in MRS broth, presenting greater production of bacteriocins and less variability when compared to the other media analyzed.
Asunto(s)
Bacteriocinas , Medios de Cultivo , Listeria monocytogenes , Pediococcus pentosaceus , Listeria monocytogenes/efectos de los fármacos , Listeria monocytogenes/crecimiento & desarrollo , Medios de Cultivo/química , Bacteriocinas/biosíntesis , Bacteriocinas/farmacología , Bacteriocinas/metabolismo , Pediococcus pentosaceus/metabolismo , Antibiosis , Queso/microbiología , Antibacterianos/farmacología , Concentración de Iones de Hidrógeno , Microbiología de Alimentos , BrasilRESUMEN
Weissella cibaria W21, W25, and W42 strains have previously been characterized for their antagonism against a range of foodborne pathogens. However, prior to their use as protective agents, further analyses such as their safety and in situ activity are needed. The safety of W. cibaria W21, W25, and W42 strains was predicted in silico and confirmed experimentally. Analyses of their genomes using appropriate software did not reveal any acquired antimicrobial resistance genes, nor mobile genetic elements (MGEs). The survival of each strain was determined in vitro under conditions mimicking the gastrointestinal tract (GIT). Thus, hemolysis analysis was performed using blood agar and the cytotoxicity assay was determined using a mixture of two cell lines (80% of Caco-2 and 20% of HT-29). We also performed the inflammation and anti-inflammation capabilities of these strains using the promonocytic human cell line U937. The Weissella strains were found to be haemolysis-negative and non-cytotoxic and did not induce any inflammation. Furthermore, these strains adhered tightly to intestinal Caco-2 cell-lines and exerted in situ anti-proliferative activity against methicillin-resistant Staphylococcus aureus (strain MRSA S1) and Escherichia coli 181, a colistin-resistant strain. However, the W. cibaria strains showed low survival rate under simulated GIT conditions in vitro. The unusual LAB-strains W. cibaria strains W21, W25, and W42 are safe and endowed with potent antibacterial activities. These strains are therefore good candidates for industrial applications. The results of this study provide a characterization and insights into Weissella strains, which are considered unusual LAB, but which prompt a growing interest in their bio-functional properties and their potential industrial applications.
Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Weissella , Humanos , Weissella/genética , Weissella/metabolismo , Brasil , Células CACO-2 , Granjas , Antibacterianos/farmacología , Antibacterianos/metabolismo , InflamaciónRESUMEN
Most Pseudomonas spp. are responsible for spoilage in refrigerated foods such as alteration in flavor, texture and appearance. Samples of Minas Frescal cheese with blue discoloration were analysed and contained a high Pseudomonas concentration (7.72 ± 0.36 log CFU/g). Out of the 26 Pseudomonas isolates that were analyzed in our study, 19 demonstrated the capability of producing a diffusible dark pigment. Thus, a pigment-producing isolate (C020) was selected by rep-PCR fingerprinting and subsequently subjected to whole-genome sequencing. The draft genome assembled comprises 42 contigs totaling 6,366,75 bp with an average G + C content of 59.97%, and the species prediction performed by TYGS server, based on the draft genome sequence, identified the C020 as Pseudomonas carnis. In order to investigate the phylogenetic relationships of this isolate with strains already identified of this species, we performed an analysis based on whole-genomic sequences. First, an analysis of all P. carnis genomes deposited in GenBank to date shows that 11% (4/37) are misidentified, and belong to the Pseudomonas paracarnis species. A comparative analysis based on phylogenomic analysis has showed that there is no evolutionary relationship between P. carnis strains carrying second copies of trp genes related to blue discoloration (trpABCDF). This finding reinforces the assertion that these genes are contained in a mobile genetic element. However, it is worth noting that all strains carrying these secondary gene copies have exclusively been isolated from food sources. This observation provides valuable insights into the potential origins and dispersion dynamics of this genetic trait within the species.
Asunto(s)
Queso , Pseudomonas , Pseudomonas/genética , Filogenia , Queso/análisis , Genómica , FenotipoRESUMEN
Among the milk contaminating microorganisms, those which are able to form heat-resistant spores are concerning, especially for dairy companies that use ultra-high temperature (UHT) technology. These spores, throughout storage, can germinate and produce hydrolytic enzymes that compromise the quality of the final product. This study evaluated 184 UHT milk samples from different batches collected from seven Brazilian dairy companies with a possible microbial contamination problem. The bacteria were isolated, phenotypically characterized, clustered by REP-PCR, and identified through 16S rDNA sequencing. The presence of Bacillus sporothermodurans was verified using biochemical tests (Gram staining, catalase and oxidase test, glucose fermentation, esculin hydrolysis, nitrate reduction, and urease test). According to these tests, none of the isolates presented typical characteristics of B. sporothermodurans. In sequence, the isolates, that presented rod-shapes, were submitted to molecular analyses in order to determine the microbial biodiversity existing among them. The isolates obtained were grouped into 16 clusters, four of which were composed of only one individual. A phylogenetic tree was constructed using the sequences obtained from the 16S rDNA sequencing and some reference strains of species close to those found using BLAST search in the NCBI nucleotide database. Through this tree, it was possible to verify the division of the isolates into two large groups, the Bacillus subtilis and the Bacillus cereus groups. Furthermore, most isolates are phylogenetically closely related, which makes it even more difficult to identify them at the species level. In conclusion, it was possible to assess, in general, the groups of sporulated contaminants in Brazilian UHT milk produced in the regions evaluated. In addition, it was also possible to determine the biodiversity of spore-forming bacteria found in UHT milk samples, thus opening up a range of possible research topics regarding the effects of the presence of these microorganisms on milk quality.
Asunto(s)
Calor , Leche , Animales , Leche/microbiología , Filogenia , Brasil , Esporas Bacterianas , Bacterias/genética , Biodiversidad , ADN Ribosómico/genética , ADN Ribosómico/químicaRESUMEN
The aim in this research paper was to investigate the effect of using calcium monophosphate (MCP) and MCP mixed with commercial phosphates salts, in total or partial replacement of calcium chloride (CaCl2) in the manufacture of Minas Frescal cheese. Initially, model cheeses were made to perform the rheological analysis during the coagulation process. Of these, the five best treatments were chosen to carry out the production of Minas Frescal cheese, used only CaCl2 and MCP, and partial replacements of MCP + polyphosphate, MCP + potassium monophosphate (MKP) and MCP. The cheeses showed no significant difference in physicochemical composition, yield and syneresis, however, the cheese with partial replacement of CaCl2 by MCP + polyphosphate and MCP + MKP showed the highest hardness values, like the control. This demonstrates that it is possible to replace calcium chloride without significant changes in the physicochemical characteristics and yield of Minas Frescal cheese, and it is still possible to modulate the hardness of the cheese produced according to the type of calcium/phosphate source used. This allows the industry to replace the source of calcium in the manufacture of Minas Frescal cheese according to the desired hardness.
Asunto(s)
Queso , Animales , Cloruro de Calcio , Queso/análisis , CalcioRESUMEN
Pediococcus pentosaceus ST65ACC was obtained from a Brazilian artisanal cheese (BAC) and characterized as bacteriocinogenic. This strain presented beneficial properties in previous studies, indicating its potential as a probiotic candidate. In this study, we aimed to carry out a genetic characterization based on whole-genome sequencing (WGS), including taxonomy, biotechnological properties, bacteriocin clusters and safety-related genes. WGS was performed using the Illumina MiSeq platform and the genome was annotated with the Prokaryotic Genome Annotation (Prokka). P. pentosaceus ST65ACC taxonomy was investigated and bacteriocin genes clusters were identified by BAGEL4, metabolic pathways were analyzed by Kyoto Encyclopedia of Genes and Genomes (KEGG) and safety-related genes were checked. P. pentosaceus ST65ACC had a total draft genome size of 1,933,194 bp with a GC content of 37.00%, and encoded 1950 protein coding sequences (CDSs), 6 rRNA, 55 tRNA, 1 tmRNA and no plasmids were detected. The analysis revealed absence of a CRISPR/Cas system, bacteriocin gene clusters for pediocin PA-1/AcH and penocin-A were identified. Genes related to beneficial properties, such as stress adaptation genes and adhesion genes, were identified. Furthermore, genes related to biogenic amines and virulence-related genes were not detected. Genes related to antibiotic resistance were identified, but not in prophage regions. Based on the obtained results, the beneficial potential of P. pentosaceus ST65ACC was confirmed, allowing its characterization as a potential probiotic candidate.
Asunto(s)
Bacteriocinas , Queso , Animales , Pediococcus pentosaceus/genética , Leche/metabolismo , Bacteriocinas/metabolismo , Genómica , Pediococcus/metabolismoRESUMEN
This study aimed to provide a further characterization of the lactic microbiota present in Minas artisanal cheese (MAC) from the Serro region by using culture-independent methods, as a complementary analysis of a previous study. The total DNA extracted from MAC samples (n = 55) was subjected to repetitive extragenic palindromic-PCR (rep-PCR) and PCR-denaturing gradient gel electrophoresis (PCR-DGGE). Rep-PCR analysis showed that core microbiota of Serro MAC was closely related, independent of the production town, farm size, or time of production. The sequencing of PCR-DGGE bands identified the prevalence of Lactococcus lactis in all samples, and Streptococcus salivarius was also identified. Thus, we conclude that when more accurate methods are unavailable, rep-PCR can be used as a culture-independent method to demonstrate if the microbiota is closely related or not among the samples. PCR-DGGE results also matched to the main findings of high-throughput sequencing, previously presented, confirming its confidence to detect the main microbial groups present in the raw milk cheeses.
Asunto(s)
Queso , Lactococcus lactis , Microbiota , Animales , Queso/microbiología , ADN Bacteriano/genética , Microbiología de Alimentos , Lactococcus lactis/genética , Microbiota/genética , Leche/microbiologíaRESUMEN
The present study aims to describe colloidal and acid gelling properties of mixed suspensions of pea and milk proteins. Mixed protein suspensions were prepared by adding pea protein isolate to rehydrated skimmed milk (3% w/w protein) to generate four mixed samples at 5, 7, 9, and 11% w/w total protein. Skimmed milk powder was also used to prepare four pure milk samples at the same protein concentrations. The samples were analyzed in regard to their pH, viscosity, color, percentage of sedimentable material, heat and ethanol stabilities, and acid gelling properties. Mixed suspensions were darker and presented higher pH, viscosity, and percentage of sedimentable material than milk samples. Heat and ethanol stabilities were similar for both systems and were reduced as a function of total protein concentration. Small oscillation rheology and induced syneresis data showed that the presence of pea proteins accelerated acid gel formation but weakened the final structure of the gels. In this context, the results found in the present work contributed to a better understanding of mixed dairy/plant protein functionalities and the development of new food products.
RESUMEN
Weissella is a genus containing Gram-positive, heterofermentative bacteria belonging to the lactic acid bacteria (LAB) group. These bacteria are endowed with promising technological and antimicrobial attributes. Weissella cibaria W25 was isolated from a dairy environment where raw milk cheeses are produced. Therefore, we sequenced and assembled the W25 draft genome sequence, which consists of 41 contigs totaling ~2.4 Mbp, with a G + C content of 45.04%. Then we carried out a comprehensive comparative genomic analysis with W. cibaria 110, known to produce the weissellicin 110 bacteriocin, and four other non-bacteriocin-producing W. cibaria strains.
RESUMEN
Processed cheese is a dairy product with multiple end-use applications, where emulsifying salts play a fundamental role in physicochemical changes during production. Moreover, some of these salts may be a strategy to control spoilage and pathogenic microorganisms, contributing to safety and shelf life extension. This study aimed to evaluate the in vitro inhibitory activity of two emulsifying salts (ESSP = short polyP and BSLP = long polyP) against Bacillus thuringiensis CFBP 3476 and Clostridium perfringens ATCC 13124, and to compare the in situ effects of two emulsifying salts treatments (T1 = 1.5% ESSP and T2 = 1.0% ESSP + 0.5% BSLP) in processed cheeses obtained by two different methods (laboratory- and pilot-scales), during 45-day storage at 6 °C. C. perfringens ATCC 13124 growth was not affected in vitro or in situ (p > 0.05), but both of the treatments reduced B. thuringiensis CFBP 4376 counts in the tested condition. Counts of the treatments with B. thuringiensis CFBP 3476 presented a higher and faster reduction in cheeses produced by the laboratory-scale method (1.6 log cfu/g) when compared to the pilot-scale method (1.8 log cfu/g) (p < 0.05). For the first time, the inhibitory effect of emulsifying salts in processed cheeses obtained by two different methods was confirmed, and changes promoted by laboratory-scale equipment influenced important interactions between the processed cheese matrix and emulsifying salts, resulting in B. thuringiensis CFBP 4376 growth reduction.
RESUMEN
Consumers worldwide are increasingly demanding food with fewer ingredients, preferably without chemical additives. The trend called "Clean Label" has stimulated the development and commercialization of new types of bioprotective bacterial cultures. These bacteria are not considered new, and several cultures have been available on the market. Additionally, new bioprotective bacteria are being identified to service the clean label trend, extend the shelf life, and, mainly, improve the food safety of food. In this context, the lactic acid bacteria (LAB) have been extensively prospected as a bioprotective culture, as they have a long history in food production and their antimicrobial activity against spoilage and pathogenic microorganisms is well established. However, to make LAB cultures available in the market is not that easy, the strains should be characterized phenotypically and genotypically, and studies of safety and technological application are necessary to validate their bioprotection performance. Thus, this review presents information on the bioprotection mechanisms developed by LAB in foods and describes the main strategies used to identify and characterize bioprotective LAB with potential application in the food industry.
RESUMEN
Few studies have investigated the diversity of spoilage fungi from the dairy production chain in Brazil, despite their importance as spoilage microorganisms. In the present study, 109 filamentous fungi were isolated from various spoiled dairy products and dairy production environments. The isolates were identified through sequencing of the internal transcribed spacer (ITS) region. In spoiled products, Penicillium and Cladosporium were the most frequent genera of filamentous fungi and were also present in the dairy environment, indicating that they may represent a primary source of contamination. For dairy production environments, the most frequent genera were Cladosporium, Penicillium, Aspergillus, and Nigrospora. Four species (Hypoxylon griseobrunneum, Rhinocladiella similis, Coniochaeta rosae, and Paecilomyces maximus) were identified for the first time in dairy products or in dairy production environment. Phytopathogenic genera were also detected, such as Montagnula, Clonostachys, and Riopa. One species isolated from the dairy production environment is classified as the pathogenic fungi, R. similis. Regarding the phylogeny, 14 different families were observed and most of the fungi belong to the Ascomycota phylum. The understanding of fungal biodiversity in dairy products and environment can support the development of conservation strategies to control food spoilage. This includes the suitable use of preservatives in dairy products, as well as the application of specific cleaning and sanitizing protocols designed for a specific group of target microorganisms.
RESUMEN
The black soldier fly larvae (BSFL), Hermetia illucens (Linnaeus), has been largely utilized for animal feed. Due to its interesting composition, BSFL has great potential to be further implemented in the human diet. Herein we compared the flour and protein extract composition based on their moisture, ash, amino acids, mineral, and protein content. To have wide knowledge on protein profile and behavior, SDS-page electrophoresis, Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) were used to give information about protein structure and thermal stability, respectively. The flour and protein extract contained respectively 37.3% and 61.1% of protein. DSC graph reported a glass transition temperature around 30 °C, recognizable by a shift in the curve, and an endothermic peak for solid melting at around 200 °C. FTIR analysis showed the main amide bands (A, B, I, II, III) for the flour and protein extract. The foam properties of BSFL protein extract were explored under different temperatures treatment, and the best foam stability was reached at 85 °C with 15 min of treatment. The data highlight the promising techno-functional properties of BSFL protein extract, and that the nutritional composition might be suitable for further use of BSFL as food fortification system.
Asunto(s)
Dípteros/metabolismo , Insectos Comestibles/metabolismo , Proteínas de Insectos/química , Secuencia de Aminoácidos , Animales , Coloides , Dípteros/embriología , Insectos Comestibles/embriología , Manipulación de Alimentos , Alimentos Fortificados , Calor , Proteínas de Insectos/aislamiento & purificación , Larva/metabolismo , Valor Nutritivo , Estabilidad ProteicaRESUMEN
Lactic acid bacteria (LAB) cultures used in food fermentation are often dried to reduce transportation costs and facilitate handling during use. Dried LAB ferments are generally lyophilized to ensure high cell viability. Spray drying has come to the forefront as a promising technique due to its versatility and lower associated energy costs. Adverse conditions during spray drying, such as mechanical stress, dehydration, heating, and oxygen exposure, can lead to low LAB cell viability. This reduced viability has limited spray drying's industrial applications thus far. This review aims to demonstrate the operations and thermodynamic principles that govern spray drying, then correlate them to the damage suffered by LAB cells during the spray-drying process. The particularities of spray drying that might cause LAB cell death are detailed in this review, and the conclusion may enhance future studies on ways to improve cell viability.
Asunto(s)
Lactobacillales , Supervivencia Celular , Desecación , Microbiología de Alimentos , Secado por PulverizaciónRESUMEN
Weissella strains have been the subject of much research over the last 5 years because of the genus' technological and probiotic potential. Certain strains have attracted the attention of the pharmaceutical, medical, and food industries because of their ability to produce antimicrobial exopolysaccharides (EPSs). Moreover, Weissella strains are able to keep foodborne pathogens in check because of the bacteriocins, hydrogen peroxide, and organic acids they can produce; all listed have recognized pathogen inhibitory activities. The Weissella genus has also shown potential for treating atopic dermatitis and certain cancers. W. cibaria, W. confusa, and W. paramesenteroides are particularly of note because of their probiotic potential (fermentation of prebiotic fibers) and their ability to survive in the gastrointestinal tract. It is important to note that most of the Weissella strains with these health-promoting properties have been shown to be save safe, due to the absence or the low occurrence of virulence or antibiotic-resistant genes. A large number of scientific studies continue to report on and to support the use of Weissella strains in the food and pharmaceutical industries. This review provides an overview of these studies and draws conclusions for future uses of this rich and previously unexplored genus.
Asunto(s)
Probióticos , Weissella , Ácidos , Bacteriocinas , Peróxido de Hidrógeno , Polisacáridos Bacterianos , Weissella/genéticaRESUMEN
The establishment of norms that regulates the production and trade of Brazilian Artisanal Cheeses (BAC) has been stimulating many small farmers for this activity. The predominance of lactic acid bacteria (LAB) is a typical characteristic of BAC, which confers desirable attributes to artisanal cheeses. However, these products can be contaminated by other microbial groups, including those that indicate hygienic failures during production and may cause spoilage, or even microorganisms that pose risks to consumers' health. A systematic review of the literature published from January 1996 to November 2020 was carried out to identify scientific data about production characteristics and microbiological aspects of BAC, with a major focus on quality and safety status of these traditional products. Studies that fulfilled the inclusion criteria indicated that artisanal chesses produced in Brazil still do not satisfactorily meet the microbiological criteria established by the national laws, mainly due to the high counts of coagulase-positive Staphylococcus and coliforms. Despite low prevalence, pathogens such as Salmonella and Listeria monocytogenes were isolated in some BAC. This review contributed to better understanding microbiological aspects of BAC, the data compiled by the authors highlight the need to improve hygiene practices along the production chain of these traditional cheeses.
Asunto(s)
Bacterias/aislamiento & purificación , Queso/microbiología , Manipulación de Alimentos/normas , Microbiología de Alimentos , Inocuidad de los Alimentos/métodos , Bacterias/clasificación , Brasil , Humanos , Lactobacillales/aislamiento & purificación , Listeria monocytogenes/aislamiento & purificación , Salmonella/aislamiento & purificación , Staphylococcus/aislamiento & purificaciónRESUMEN
Lactococcus lactis subsp. lactis bv. diacetylactis strains are often used as starter cultures by the dairy industry due to their production of acetoin and diacetyl, important substances that add buttery flavor notes in dairy products. Twenty-three L. lactis subsp. lactis isolates were obtained from dairy products (milk and cheese) and dairy farms (silage), identified at a biovar level, fingerprinted by rep-PCR and characterized for some technological features. Fifteen isolates presented molecular and phenotypical (diacetyl and citrate) characteristics coherent with L. lactis subsp. lactis bv. diacetylactis and rep-PCR allowed the identification of 12 distinct profiles (minimum similarity of 90%). Based on technological features, only two isolates were not able to coagulate skim milk and 10 were able to produce proteases. All isolates were able to acidify skim milk: two isolates, in special, presented high acidifying ability due to their ability in reducing more than two pH units after 24 h. All isolates were also able to grow at different NaCl concentrations (0 to 10%, w/v), and isolates obtained from peanut and grass silages presented the highest NaCl tolerance (10%, w/v). These results indicate that the L. lactis subsp. lactis bv. diacetylactis isolates presented interesting technological features for potential application in fermented foods production. Despite presenting promising technological features, the isolates must be assessed according to their safety before being considered as starter cultures.