Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Acta Neuropathol ; 147(1): 68, 2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38583102

RESUMEN

Mutations in the pivotal metabolic isocitrate dehydrogenase (IDH) enzymes are recognized to drive the molecular footprint of diffuse gliomas, and patients with IDH mutant gliomas have overall favorable outcomes compared to patients with IDH wild-type tumors. However, survival still varies widely among patients with IDH mutated tumors. Here, we aimed to characterize molecular signatures that explain the range of IDH mutant gliomas. By integrating matched epigenome-wide methylome, transcriptome, and global metabolome data in 154 patients with gliomas, we identified a group of IDH mutant gliomas with globally altered metabolism that resembled IDH wild-type tumors. IDH-mutant gliomas with altered metabolism have significantly shorter overall survival from their IDH mutant counterparts that is not fully accounted for by recognized molecular prognostic markers of CDKN2A/B loss and glioma CpG Island Methylator Phenotype (GCIMP) status. IDH-mutant tumors with dysregulated metabolism harbored distinct epigenetic alterations that converged to drive proliferative and stem-like transcriptional profiles, providing a window to target novel dependencies in gliomas.


Asunto(s)
Glioma , Isocitrato Deshidrogenasa , Humanos , Isocitrato Deshidrogenasa/genética , Glioma/genética , Epigenómica , Mutación/genética , Transcriptoma
2.
Cell Rep ; 43(2): 113684, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38261511

RESUMEN

Viral mimicry describes the immune response induced by endogenous stimuli such as double-stranded RNA (dsRNA) from endogenous retroelements. Activation of viral mimicry has the potential to kill cancer cells or augment anti-tumor immune responses. Here, we systematically identify mechanisms of viral mimicry adaptation associated with cancer cell dependencies. Among the top hits is the RNA decay protein XRN1 as an essential gene for the survival of a subset of cancer cell lines. XRN1 dependency is mediated by mitochondrial antiviral signaling protein and protein kinase R activation and is associated with higher levels of cytosolic dsRNA, higher levels of a subset of Alus capable of forming dsRNA, and higher interferon-stimulated gene expression, indicating that cells die due to induction of viral mimicry. Furthermore, dsRNA-inducing drugs such as 5-aza-2'-deoxycytidine and palbociclib can generate a synthetic dependency on XRN1 in cells initially resistant to XRN1 knockout. These results indicate that XRN1 is a promising target for future cancer therapeutics.


Asunto(s)
Neoplasias , Retroelementos , Humanos , Línea Celular , Citosol , Decitabina , Exonucleasas , Neoplasias/genética , ARN Bicatenario , Exorribonucleasas , Proteínas Asociadas a Microtúbulos
3.
Genome Biol ; 25(1): 11, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191487

RESUMEN

BACKGROUND: Transcription factors bind DNA in specific sequence contexts. In addition to distinguishing one nucleobase from another, some transcription factors can distinguish between unmodified and modified bases. Current models of transcription factor binding tend not to take DNA modifications into account, while the recent few that do often have limitations. This makes a comprehensive and accurate profiling of transcription factor affinities difficult. RESULTS: Here, we develop methods to identify transcription factor binding sites in modified DNA. Our models expand the standard A/C/G/T DNA alphabet to include cytosine modifications. We develop Cytomod to create modified genomic sequences and we also enhance the MEME Suite, adding the capacity to handle custom alphabets. We adapt the well-established position weight matrix (PWM) model of transcription factor binding affinity to this expanded DNA alphabet. Using these methods, we identify modification-sensitive transcription factor binding motifs. We confirm established binding preferences, such as the preference of ZFP57 and C/EBPß for methylated motifs and the preference of c-Myc for unmethylated E-box motifs. CONCLUSIONS: Using known binding preferences to tune model parameters, we discover novel modified motifs for a wide array of transcription factors. Finally, we validate our binding preference predictions for OCT4 using cleavage under targets and release using nuclease (CUT&RUN) experiments across conventional, methylation-, and hydroxymethylation-enriched sequences. Our approach readily extends to other DNA modifications. As more genome-wide single-base resolution modification data becomes available, we expect that our method will yield insights into altered transcription factor binding affinities across many different modifications.


Asunto(s)
Regulación de la Expresión Génica , Factores de Transcripción , Epigenómica , ADN , Epigénesis Genética
4.
Br J Haematol ; 204(1): 206-220, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37726227

RESUMEN

Progression to aggressive secondary acute myeloid leukaemia (sAML) poses a significant challenge in the management of myeloproliferative neoplasms (MPNs). Since the physiopathology of MPN is closely linked to the activation of interferon (IFN) signalling and that AML initiation and aggressiveness is driven by leukaemia stem cells (LSCs), we investigated these pathways in MPN to sAML progression. We found that high IFN signalling correlated with low LSC signalling in MPN and AML samples, while MPN progression and AML transformation were characterized by decreased IFN signalling and increased LSC signature. A high LSC to IFN expression ratio in MPN patients was associated with adverse clinical prognosis and higher colony forming potential. Moreover, treatment with hypomethylating agents (HMAs) activates the IFN signalling pathway in MPN cells by inducing a viral mimicry response. This response is characterized by double-stranded RNA (dsRNA) formation and MDA5/RIG-I activation. The HMA-induced IFN response leads to a reduction in LSC signature, resulting in decreased stemness. These findings reveal the frequent evasion of viral mimicry during MPN-to-sAML progression, establish the LSC-to-IFN expression ratio as a progression biomarker, and suggests that HMAs treatment can lead to haematological response in murine models by re-activating dsRNA-associated IFN signalling.


Asunto(s)
Leucemia Mieloide Aguda , Trastornos Mieloproliferativos , Humanos , Animales , Ratones , Trastornos Mieloproliferativos/tratamiento farmacológico , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/complicaciones , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Pronóstico , Biomarcadores , Interferones/uso terapéutico
5.
Artículo en Inglés | MEDLINE | ID: mdl-37680384

RESUMEN

Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is a rare FGF23-independent disorder caused by biallelic variants in the SLC34A3 gene. The disease severity varies, and patients have an increased risk of developing renal complications. Phosphate supplementation is standard of care and active vitamin D analogs are not indicated as they could worsen the hypercalciuria. We report a Brazilian girl with HHRH who presented with knee pain and progressive genu valgum deformity that became apparent later in childhood (at age 8). Nephrocalcinosis was also identified at age 13. Next-generation sequencing (NGS) target panel directed to inherited forms of rickets detected compound heterozygous pathogenic variants in SLC34A3, including a novel missense variant c.1217G>T (p.Gly406Val). Compliance to oral phosphorus therapy was suboptimal and adjunctive chlorthalidone therapy improved hypercalciuria. Our case highlights the phenotypic variability of patients with HHRH and expands the growing list of SLC34A3 variants associated with this disorder. An accurate diagnosis is crucial for proper treatment, and a thiazide diuretic may be useful as adjunctive therapy for controlling hypercalciuria.

6.
Front Immunol ; 14: 1161901, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37600767

RESUMEN

Introduction: The imbalance between Th17 and regulatory T cells in inflammatory bowel diseases (IBD) promotes intestinal epithelial cell damage. In this scenario, T helper cell lineage commitment is accompanied by dynamic changes to the chromatin that facilitate or repress gene expression. Methods: Here, we characterized the chromatin landscape and heterogeneity of intestinal and peripheral CD4 T cellsfrom IBD patients using in house ATAC-Seq and single cell RNA-Seq libraries. Results: We show that chromatin accessibility profiles of CD4 T cells from inflamed intestinal biopsies relate to genes associated with a network of inflammatory processes. After integrating the chromatin profiles of tissue-derived CD4 T cells and in-vitro polarized CD4 T cell subpopulations, we found that the chromatin accessibility changes of CD4 T cells were associated with a higher predominance of pathogenic Th17 cells (pTh17 cells) in inflamed biopsies. In addition, IBD risk loci in CD4 T cells were colocalized with accessible chromatin changes near pTh17-related genes, as shown in intronic STAT3 and IL23R regions enriched in areas of active intestinal inflammation. Moreover, single cell RNA-Seq analysis revealed a population of pTh17 cells that co-expresses Th1 and cytotoxic transcriptional programs associated with IBD severity. Discussion: Altogether, we show that cytotoxic pTh17 cells were specifically associated with IBD genetic variants and linked to intestinal inflammation of IBD patients.


Asunto(s)
Cromatina , Enfermedades Inflamatorias del Intestino , Humanos , Cromatina/genética , Linfocitos T CD4-Positivos , Células Th17 , Enfermedades Inflamatorias del Intestino/genética , Inflamación
7.
bioRxiv ; 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37292765

RESUMEN

Overexpression of repetitive elements is an emerging hallmark of human cancers 1 . Diverse repeats can mimic viruses by replicating within the cancer genome through retrotransposition, or presenting pathogen-associated molecular patterns (PAMPs) to the pattern recognition receptors (PRRs) of the innate immune system 2-5 . Yet, how specific repeats affect tumor evolution and shape the tumor immune microenvironment (TME) in a pro- or anti-tumorigenic manner remains poorly defined. Here, we integrate whole genome and total transcriptome data from a unique autopsy cohort of multiregional samples collected in pancreatic ductal adenocarcinoma (PDAC) patients, into a comprehensive evolutionary analysis. We find that more recently evolved S hort I nterspersed N uclear E lements (SINE), a family of retrotransposable repeats, are more likely to form immunostimulatory double-strand RNAs (dsRNAs). Consequently, younger SINEs are strongly co-regulated with RIG-I like receptor associated type-I interferon genes but anti-correlated with pro-tumorigenic macrophage infiltration. We discover that immunostimulatory SINE expression in tumors is regulated by either L ong I nterspersed N uclear E lements 1 (LINE1/L1) mobility or ADAR1 activity in a TP53 mutation dependent manner. Moreover, L1 retrotransposition activity tracks with tumor evolution and is associated with TP53 mutation status. Altogether, our results suggest pancreatic tumors actively evolve to modulate immunogenic SINE stress and induce pro-tumorigenic inflammation. Our integrative, evolutionary analysis therefore illustrates, for the first time, how dark matter genomic repeats enable tumors to co-evolve with the TME by actively regulating viral mimicry to their selective advantage.

8.
Nat Commun ; 14(1): 3062, 2023 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-37244935

RESUMEN

Self-renewal is a crucial property of glioblastoma cells that is enabled by the choreographed functions of chromatin regulators and transcription factors. Identifying targetable epigenetic mechanisms of self-renewal could therefore represent an important step toward developing effective treatments for this universally lethal cancer. Here we uncover an epigenetic axis of self-renewal mediated by the histone variant macroH2A2. With omics and functional assays deploying patient-derived in vitro and in vivo models, we show that macroH2A2 shapes chromatin accessibility at enhancer elements to antagonize transcriptional programs of self-renewal. macroH2A2 also sensitizes cells to small molecule-mediated cell death via activation of a viral mimicry response. Consistent with these results, our analyses of clinical cohorts indicate that high transcriptional levels of this histone variant are associated with better prognosis of high-grade glioma patients. Our results reveal a targetable epigenetic mechanism of self-renewal controlled by macroH2A2 and suggest additional treatment approaches for glioblastoma patients.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Histonas/genética , Histonas/metabolismo , Glioblastoma/metabolismo , Regulación Neoplásica de la Expresión Génica , Cromatina/metabolismo , Epigénesis Genética , Línea Celular Tumoral , Células Madre Neoplásicas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo
9.
J Fungi (Basel) ; 9(4)2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37108911

RESUMEN

Gibellula (Cordycipitaceae, Hypocreales) is frequently observed growing on spiders, but little is known about their host range. One of the greatest challenges in describing these interactions is identifying the host, since the fungus often rapidly consumes the parasitised spiders and destroys important diagnostic taxonomic traits. Additionally, the global diversity of Gibellula remains unclear, as does the natural history and phylogenetic relationships of most of the species. Herein, we performed an extensive investigation on the species of Gibellula, reconstructed the most complete molecular phylogeny of the genus in the context of Cordycipitaceae, and performed a systematic review in order to provide the foundations towards a better understanding of the genus. Therefore, we have performed an integrative study to investigate the life history of the genus and to disentangle the questionable number of valid species proposed over time. We provided novel molecular data for published species that had not been sequenced before, such as G. mirabilis and G. mainsii, and evaluated all the original and modern morphological descriptions. In addition, we presented its global known distribution and compiled all available molecular data. We suggested a set of terms and morphological traits that should be considered in future descriptions of the genus and that a total of 31 species should be considered as accepted.

10.
Trends Cancer ; 9(1): 55-68, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36216729

RESUMEN

Endogenous retroelements are DNA sequences which can duplicate and move to new locations in the genome. Actively moving endogenous retroelements can be disruptive to the host, and their expression is therefore often repressed. Interestingly, drugs that disrupt the repression of endogenous retroelements show promise for treating cancer. Expressed endogenous retroelements can activate innate immune receptors that activate the antiviral response, potentially leading to the death of cancer cells. We discuss disruptions to cellular processes which can lead to activation of the antiviral state from endogenous retroelements, and present the 'fire alarm hypothesis', where we argue that endogenous retroelements act as alarms for disruptions to these cellular processes. Furthermore, we discuss the properties of endogenous retroelements which make them suitable as alarms.


Asunto(s)
Neoplasias , Retroelementos , Humanos , Retroelementos/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Antivirales , Homeostasis/genética
11.
Neuro Oncol ; 25(8): 1452-1460, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-36455236

RESUMEN

BACKGROUND: Resolving the differential diagnosis between brain metastases (BM), glioblastomas (GBM), and central nervous system lymphomas (CNSL) is an important dilemma for the clinical management of the main three intra-axial brain tumor types. Currently, treatment decisions require invasive diagnostic surgical biopsies that carry risks and morbidity. This study aimed to utilize methylomes from cerebrospinal fluid (CSF), a biofluid proximal to brain tumors, for reliable non-invasive classification that addresses limitations associated with low target abundance in existing approaches. METHODS: Binomial GLMnet classifiers of tumor type were built, in fifty iterations of 80% discovery sets, using CSF methylomes obtained from 57 BM, GBM, CNSL, and non-neoplastic control patients. Publicly-available tissue methylation profiles (N = 197) on these entities and normal brain parenchyma were used for validation and model optimization. RESULTS: Models reliably distinguished between BM (area under receiver operating characteristic curve [AUROC] = 0.93, 95% confidence interval [CI]: 0.71-1.0), GBM (AUROC = 0.83, 95% CI: 0.63-1.0), and CNSL (AUROC = 0.91, 95% CI: 0.66-1.0) in independent 20% validation sets. For validation, CSF-based methylome signatures reliably distinguished between tumor types within external tissue samples and tumors from non-neoplastic controls in CSF and tissue. CSF methylome signals were observed to align closely with tissue signatures for each entity. An additional set of optimized CSF-based models, built using tumor-specific features present in tissue data, showed enhanced classification accuracy. CONCLUSIONS: CSF methylomes are reliable for liquid biopsy-based classification of the major three malignant brain tumor types. We discuss how liquid biopsies may impact brain cancer management in the future by avoiding surgical risks, classifying unbiopsiable tumors, and guiding surgical planning when resection is indicated.


Asunto(s)
Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Glioblastoma , Humanos , Epigenoma , Neoplasias Encefálicas/patología , Neoplasias del Sistema Nervioso Central/diagnóstico , Biopsia Líquida , Encéfalo/patología , Glioblastoma/diagnóstico , Glioblastoma/genética , Biomarcadores de Tumor
12.
iScience ; 25(12): 105487, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36425756

RESUMEN

Small-cell lung cancer (SCLC) methylome is understudied. Here, we comprehensively profile SCLC using cell-free methylated DNA immunoprecipitation followed by sequencing (cfMeDIP-seq). Cell-free DNA (cfDNA) from plasma of 74 patients with SCLC pre-treatment and from 20 non-cancer participants, genomic DNA (gDNA) from peripheral blood leukocytes from the same 74 patients, and 7 accompanying circulating tumor cell-derived xenografts (CDXs) underwent cfMeDIP-seq. Peripheral blood leukocyte methylation (PRIME) subtraction to improve tumor specificity. SCLC cfDNA methylation is distinct from non-cancer but correlates with CDX tumor methylation. PRIME and k-means consensus identified two methylome clusters with prognostic associations that related to axon guidance, neuroactive ligand-receptor interaction, pluripotency of stem cells, and differentially methylated at long noncoding RNA and other repeats features. We comprehensively profiled the SCLC methylome in a large patient cohort and identified methylome clusters with prognostic associations. Our work demonstrates the potential of liquid biopsies in examining SCLC biology encoded in the methylome.

13.
Nat Commun ; 13(1): 6467, 2022 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-36309516

RESUMEN

Metastatic prostate cancer remains a major clinical challenge and metastatic lesions are highly heterogeneous and difficult to biopsy. Liquid biopsy provides opportunities to gain insights into the underlying biology. Here, using the highly sensitive enrichment-based sequencing technology, we provide analysis of 60 and 175 plasma DNA methylomes from patients with localized and metastatic prostate cancer, respectively. We show that the cell-free DNA methylome can capture variations beyond the tumor. A global hypermethylation in metastatic samples is observed, coupled with hypomethylation in the pericentromeric regions. Hypermethylation at the promoter of a glucocorticoid receptor gene NR3C1 is associated with a decreased immune signature. The cell-free DNA methylome is reflective of clinical outcomes and can distinguish different disease types with 0.989 prediction accuracy. Finally, we show the ability of predicting copy number alterations from the data, providing opportunities for joint genetic and epigenetic analysis on limited biological samples.


Asunto(s)
Ácidos Nucleicos Libres de Células , Neoplasias de la Próstata , Masculino , Humanos , Epigenoma , Ácidos Nucleicos Libres de Células/genética , Neoplasias de la Próstata/patología , Próstata/patología , Metilación de ADN/genética
14.
Cell Rep Methods ; 2(9): 100294, 2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-36160046

RESUMEN

Cell-free methylated DNA immunoprecipitation sequencing (cfMeDIP-seq) identifies genomic regions with DNA methylation, using a protocol adapted to work with low-input DNA samples and with cell-free DNA (cfDNA). We developed a set of synthetic spike-in DNA controls for cfMeDIP-seq to provide a simple and inexpensive reference for quantitative normalization. We designed 54 DNA fragments with combinations of methylation status (methylated and unmethylated), fragment length (80 bp, 160 bp, 320 bp), G + C content (35%, 50%, 65%), and fraction of CpG dinucleotides within the fragment (1/80 bp, 1/40 bp, 1/20 bp). Using 0.01 ng of spike-in controls enables training a generalized linear model that absolutely quantifies methylated cfDNA in MeDIP-seq experiments. It mitigates batch effects and corrects for biases in enrichment due to known biophysical properties of DNA fragments and other technical biases.


Asunto(s)
Ácidos Nucleicos Libres de Células , Epigenoma , Genómica/métodos , Metilación de ADN , ADN/genética , Ácidos Nucleicos Libres de Células/genética
15.
J Microbiol Biotechnol ; 32(8): 967-975, 2022 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-35879284

RESUMEN

Kombucha mutualistic community (KMC) is composed by acetic acid bacteria and yeasts, producing fermented tea with health benefits. As part of the BIOlogy and Mars EXperiment (BIOMEX) project, the effect of Mars-like conditions on the KMC was analyzed. Here, we analyzed metagenome-assembled genomes (MAGs) of the Komagataeibacter, which is a predominant genus in KMC, to understand their roles in the KMC after exposure to Mars-like conditions (outside the International Space Station) based on functional genetic elements. We constructed three MAGs: K. hansenii, K. rhaeticus, and K. oboediens. Our results showed that (i) K. oboediens MAG functionally more complex than K. hansenii, (ii) K. hansenii is a keystone in KMCs with specific functional features to tolerate extreme stress, and (iii) genes related to the PPDK, betaine biosynthesis, polyamines biosynthesis, sulfate-sulfur assimilation pathway as well as type II toxin-antitoxin (TA) system, quorum sensing (QS) system, and cellulose production could play important roles in the resilience of KMC after exposure to Mars-like stress. Our findings show the potential mechanisms through which Komagataeibacter tolerates the extraterrestrial stress and will help to understand minimal microbial composition of KMC for space travelers.


Asunto(s)
Acetobacteraceae , Metagenoma , Celulosa , Levaduras
16.
Astrobiology ; 22(9): 1072-1080, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35714354

RESUMEN

The spread of antibiotic resistance is becoming a serious global health concern. Numerous studies have been done to investigate the dynamics of antibiotic resistance genes (ARGs) in both indoor and outdoor environments. Nonetheless, few studies are available about the dynamics of the antibiotic resistome (total content of ARGs in the microbial cultures or communities) under stress in outer space environments. In this study, we aimed to experimentally investigate the dynamics of ARGs and metal resistance genes (MRGs) in Kombucha Mutualistic Community (KMC) samples exposed to Mars-like conditions simulated during the BIOMEX experiment outside the International Space Station with analysis of the metagenomics data previously produced. Thus, we compared them with those of the respective non-exposed KMC samples. The antibiotic resistome responded to the Mars-like conditions by enriching its diversity with ARGs after exposure, which were not found in non-exposed samples (i.e., tet and van genes against tetracycline and vancomycin, respectively). Furthermore, ARGs and MRGs were correlated; therefore, their co-selection could be assumed as a mechanism for maintaining antibiotic resistance in Mars-like environments. Overall, these results highlight the high plasticity of the antibiotic resistome in response to extraterrestrial conditions and in the absence of anthropogenic stresses.


Asunto(s)
Antibacterianos , Metagenoma , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Metagenómica
17.
Blood ; 140(9): 992-1008, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35639948

RESUMEN

Hematopoietic stem cell (HSC) dormancy is understood as supportive of HSC function and its long-term integrity. Although regulation of stress responses incurred as a result of HSC activation is recognized as important in maintaining stem cell function, little is understood of the preventive machinery present in human HSCs that may serve to resist their activation and promote HSC self-renewal. We demonstrate that the transcription factor PLAG1 is essential for long-term HSC function and, when overexpressed, endows a 15.6-fold enhancement in the frequency of functional HSCs in stimulatory conditions. Genome-wide measures of chromatin occupancy and PLAG1-directed gene expression changes combined with functional measures reveal that PLAG1 dampens protein synthesis, restrains cell growth and division, and enhances survival, with the primitive cell advantages it imparts being attenuated by addition of the potent translation activator, c-MYC. We find PLAG1 capitalizes on multiple regulatory factors to ensure protective diminished protein synthesis including 4EBP1 and translation-targeting miR-127 and does so independently of stress response signaling. Overall, our study identifies PLAG1 as an enforcer of human HSC dormancy and self-renewal through its highly context-specific regulation of protein biosynthesis and classifies PLAG1 among a rare set of bona fide regulators of messenger RNA translation in these cells. Our findings showcase the importance of regulated translation control underlying human HSC physiology, its dysregulation under activating demands, and the potential if its targeting for therapeutic benefit.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Células Madre Hematopoyéticas , Factores de Transcripción , Diferenciación Celular/fisiología , Proliferación Celular , Autorrenovación de las Células , Células Madre Hematopoyéticas/metabolismo , Humanos , Factores de Transcripción/metabolismo
18.
Nat Chem Biol ; 18(8): 821-830, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35578032

RESUMEN

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype with the worst prognosis and few effective therapies. Here we identified MS023, an inhibitor of type I protein arginine methyltransferases (PRMTs), which has antitumor growth activity in TNBC. Pathway analysis of TNBC cell lines indicates that the activation of interferon responses before and after MS023 treatment is a functional biomarker and determinant of response, and these observations extend to a panel of human-derived organoids. Inhibition of type I PRMT triggers an interferon response through the antiviral defense pathway with the induction of double-stranded RNA, which is derived, at least in part, from inverted repeat Alu elements. Together, our results represent a shift in understanding the antitumor mechanism of type I PRMT inhibitors and provide a rationale and biomarker approach for the clinical development of type I PRMT inhibitors.


Asunto(s)
Proteína-Arginina N-Metiltransferasas , Neoplasias de la Mama Triple Negativas , Biomarcadores , Línea Celular Tumoral , Humanos , Interferones/uso terapéutico , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Proteína-Arginina N-Metiltransferasas/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo
19.
Proc Natl Acad Sci U S A ; 119(21): e2114324119, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35584120

RESUMEN

Antiandrogen strategies remain the prostate cancer treatment backbone, but drug resistance develops. We show that androgen blockade in prostate cancer leads to derepression of retroelements (REs) followed by a double-stranded RNA (dsRNA)-stimulated interferon response that blocks tumor growth. A forward genetic approach identified H3K9 trimethylation (H3K9me3) as an essential epigenetic adaptation to antiandrogens, which enabled transcriptional silencing of REs that otherwise stimulate interferon signaling and glucocorticoid receptor expression. Elevated expression of terminal H3K9me3 writers was associated with poor patient hormonal therapy outcomes. Forced expression of H3K9me3 writers conferred resistance, whereas inhibiting H3K9-trimethylation writers and readers restored RE expression, blocking antiandrogen resistance. Our work reveals a drug resistance axis that integrates multiple cellular signaling elements and identifies potential pharmacologic vulnerabilities.


Asunto(s)
Antagonistas de Receptores Androgénicos , Neoplasias de la Próstata Resistentes a la Castración , Antagonistas de Andrógenos/farmacología , Antagonistas de Andrógenos/uso terapéutico , Antagonistas de Receptores Androgénicos/farmacología , Andrógenos/farmacología , Metilación de ADN , Resistencia a Antineoplásicos , Silenciador del Gen , Humanos , Interferones , Masculino , Metilación , Nitrilos/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...