Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Allergy Asthma Immunol Res ; 15(2): 246-261, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37021509

RESUMEN

PURPOSE: Asthma is a frequent chronic inflammatory bronchial disease affecting more than 300 million patients worldwide, 70% of whom are secondary to allergy. The diversity of asthmatic endotypes contributes to their complexity. The inter-relationship between allergen and other exposure and the airway microbiome adds to the phenotypic diversity and defines the natural course of asthma. Here, we compared the mouse models of house dust mite (HDM)-induced allergic asthma. Allergic sensitization was performed via various routes and associated with outcomes. METHODS: Mice were sensitized with HDM via the oral, nasal or percutaneous routes. Lung function, barrier integrity, immune response and microbiota composition were analyzed. RESULTS: Severe impairment of respiratory function was observed in the mice sensitized by the nasal and cutaneous paths. It was associated with epithelial dysfunction characterized by an increased permeability secondary to junction protein disruption. Such sensitization paths induced a mixed eosinophilic and neutrophilic inflammatory response with high interleukin (IL)-17 airway secretion. In contrast, orally sensitized mice showed a mild impairment of respiratory function. Epithelial dysfunction was mild with increased mucus production, but preserved epithelial junctions. Regarding lung microbiota, sensitization provoked a significant loss of diversity. At the genus level, Cutibacterium, Acinetobacter, Streptococcus and Lactobacillus were found to be modulated according to the sensitization pathway. An increase in theanti-inflammatory microbiota metabolites was observed in the oral-sensitization group. CONCLUSIONS: Our study highlights the strong impact of the sensitization route on the pathophysiology and the critical phenotypic diversity of allergic asthma in a mouse model.

2.
Int J Pharm ; 629: 122349, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36328197

RESUMEN

An in vitro approach is proposed to study the release of an Active Pharmaceutical Ingredient-Ionic Liquid (API-IL) from a natural biopolymer matrix based on zein, a maize storage protein. Zein can be processed in the molten state with 20 w% [Lidocainium][Ibuprofenate] added as API-IL also acting as plasticizer and potentially co-plasticized by glycerol. The thermal stability of the matrix is checked, as well as the in vivo biological activity of the API-IL confirming anesthetic and anti-inflammatory activities. Model tablets are thermomolded at 130 °C (∅20 mm, 0.2 mm thick) and submitted to simulated digestion based on the INFOGEST static protocol of gastrointestinal food digestion at 37 °C (2 h under gastric conditions followed by 2 h under intestinal ones). The release of the API-IL is evaluated by HPLC-UV to dissociate lidocainium, that shows a progressive release (35 % after 2 h and 60 % after 4 h digestion), from ibuprofenate, that is mainly released under intestinal conditions due to low solubility in acidic conditions. The monitoring of the tablets reveals release mechanisms based on diffusion without noticeable erosion of the matrix. These results demonstrate the interest of this thermoplastic material to provide a relevant drug delivery system.


Asunto(s)
Líquidos Iónicos , Zeína , Solubilidad , Comprimidos , Digestión
3.
Toxicology ; 472: 153188, 2022 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-35430321

RESUMEN

Allergic diseases are increasing worldwide, and their precise causes are not fully understood. However, this observation can be correlated with growing chemical pollution of the environment. Bisphenol A (BPA) alters the immune system, microbiota and barrier functions. Here, we studied the effect of oral BPA at levels equivalent to human exposure to understand the mechanisms of immunological, physiological and microbial action on food allergies. In a murine model of allergy, we evaluated the effect of direct oral exposure to BPA at 4 µg/kg bw/d corresponding to tolerable daily intake (TDI). We studied symptoms, intestinal physiology and humorall and cellular immune responses during food allergy. We explored the relationship between oral exposure to BPA and changes in the gut microenvironment. Markers of food allergy and intestinal permeability were increased following exposure to BPA. We also observed a modulated humorall and T-cell response with aggravation of food allergy inflammation. Moreover, BPA exposure induced gut dysbiosis and decreased microbial diversity induced by food allergy. Altogether, these results suggest that the 2015 European Food Safety Authority (EFSA) TDI should be reviewed to consider the immunotoxicity of BPA.


Asunto(s)
Compuestos de Bencidrilo , Hipersensibilidad a los Alimentos , Animales , Compuestos de Bencidrilo/toxicidad , Modelos Animales de Enfermedad , Inflamación/inducido químicamente , Ratones , Fenoles
4.
Allergy ; 77(3): 933-945, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34324715

RESUMEN

BACKGROUND: Regulatory T cells (Tregs) are known to protect against allergies. Moreover, the decrease in the frequency and efficiency of Tregs amplifies allergic symptoms. AIM: This study investigated whether expanding Tregs in vivo with an IL-2/IL-2 antibody complex could be safe, well tolerated and efficient in a therapeutic setting in allergies. METHODS: We produced an anti-IL-2 antibody (1C6) and demonstrated that when it is complexed to human IL-2, it increases IL-2 efficiency to induce Tregs in vivo without any detectable side effects. Furthermore, the IL-2/1C6 complex induces an increase in Helios expression by Tregs, suggesting that it not only elevated Treg numbers but also boosted their functions. Using mouse models of house-dust-mite-induced airway inflammation and wheat-gliadin-induced food allergies, we investigated the therapeutic potential of the IL-2/1C6 complex in allergies. RESULTS: IL-2/1C6 treatment significantly reduced allergic symptoms, specific IgE production, the adaptive immune response and tissue damage. Interestingly, IL-2/1C6 treatment modulated innate lymphoid cells by increasing ILC2s in asthma and decreasing ILC3s in food allergies. CONCLUSION: In conclusion,complexed IL-2/anti-IL-2 may restore Treg numbers and function in respiratory and food allergies, thereby improving allergic markers and symptoms. Our IL-2/anti-IL-2 complex offers new hope for reestablishing immune tolerance in patients with allergies.


Asunto(s)
Asma , Hipersensibilidad a los Alimentos , Animales , Modelos Animales de Enfermedad , Humanos , Inmunidad Innata , Interleucina-2 , Linfocitos , Ratones , Linfocitos T Reguladores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA