Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmacol Biochem Behav ; 240: 173778, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38679081

RESUMEN

Depression and anxiety disorders have their pathophysiologies linked to inflammation and oxidative stress. In this context, celecoxib (CLX) and etoricoxib (ETR) inhibit cyclooxygenase 2 (COX-2), an enzyme expressed by cells involved in the inflammatory process and found in the brain. Studies have been using CLX as a possible drug in the treatment of depression, although its mechanisms at the central nervous system level are not fully elucidated. In this study, the effects of CLX and ETR on behavioral, oxidative, and inflammatory changes induced by systemic exposure to Escherichia coli lipopolysaccharide (LPS) were evaluated in adult male swiss mice. For ten days, the animals received intraperitoneal injections of LPS at 0.5 mg/kg. From the sixth to the tenth day, one hour after LPS exposure, they were treated orally with CLX (15 mg/kg), ETR (10 mg/kg), or fluoxetine (FLU) (20 mg/kg). Twenty-four hours after the last oral administration, the animals underwent evaluation of locomotor activity (open field test), predictive tests for depressive-like behavior (forced swim and tail suspension tests), and anxiolytic-like effect (elevated plus maze and hole board tests). Subsequently, the hippocampus, prefrontal cortex and striatum were dissected for the measurement of oxidative and nitrosative parameters (malondialdehyde, nitrite, and glutathione) and quantification of pro-inflammatory cytokines (IL-1ß and IL-6). LPS induced depressive and anxious-like behavior, and treatment with CLX or ETR was able to reverse most of the behavioral changes. It was evidenced that nitrosative stress and the degree of lipid peroxidation induced by LPS were reduced in different brain areas after treatment with the drugs, as well as the endogenous defense system against free radicals was strengthened. CLX and ETR also significantly reduced LPS-induced cytokine levels. These data are expected to expand information on the role of inflammation in depression and anxiety and provide insights into possible mechanisms of COX-2 inhibitors in psychiatric disorders with a neurobiological basis in inflammation and oxidative stress.

2.
Naunyn Schmiedebergs Arch Pharmacol ; 395(9): 1029-1045, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35665831

RESUMEN

We postulated that dimethyl fumarate (DMF) exerts neuroprotective effects against depression-like behaviors through astrocytes and microglia modulation. To ascertain our hypothesis and define the mechanistic pathways involved in effect of DMF on neuroinflammation, we used the depression model induced by chronic unpredictable mild stress (CUMS), in which, the mice were exposed to stressful events for 28 days and from the 14th day they received DMF in the doses of 50 and 100 mg/kg or fluoxetine 10 mg/kg or saline. On the 29th day, the animals were subjected to behavioral tests. Microglia (Iba1) and astrocyte (GFAP) marker expressions were evaluated by immunofluorescence analyzes and the cytokines TNF-α and IL-Iß by immunoenzymatic assay. In addition, computational target prediction, 3D protein structure prediction, and docking calculations were performed with monomethyl fumarate (DMF active metabolite) and the Keap1 and HCAR2 proteins, which suggested that these could be the probable targets related protective effects. CUMS induced anxiety- and depressive-like behaviors, cognitive deficit, decreased GFAP, and increased Iba1, TNF-α, and IL-Iß expression in the hippocampus. These alterations were reversed by DMF. Thus, it is suggested that one of the mechanisms involved in the antidepressant effect of DMF is neuroinflammatory suppression, through the signaling pathway HCAR2/Nrf2. However, more studies must be performed to better understand the molecular mechanisms of this drug.


Asunto(s)
Dimetilfumarato , Fármacos Neuroprotectores , Animales , Astrocitos , Depresión , Proteína 1 Asociada A ECH Tipo Kelch , Ratones , Microglía , Factor 2 Relacionado con NF-E2 , Receptores Acoplados a Proteínas G , Transducción de Señal , Factor de Necrosis Tumoral alfa
3.
Brain Res Bull ; 149: 60-74, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31004733

RESUMEN

Sildenafil is a phosphodiesterase 5 inhibitor used for the treatment of erectile dysfunction and pulmonary hypertension. Proconvulsant effect is a serious adverse event associated with sildenafil use. Here, we investigated the possible proconvulsant effects of sildenafil in pilocarpine (PILO)-induced seizures model, which mimics some aspects of temporal lobe epilepsy. We also evaluated sildenafil's effects on hippocampal markers related to PILO-induced seizure, for instance, acetylcholinesterase (AChE) activity, oxidative stress and nitric oxide (NO) markers, namely nitrite, inducible NO synthase (iNOS) and neuronal NOS (nNOS). The influences of muscarinic receptors blockade on sildenafil proconvulsant effects and brain nitrite levels were also evaluated. Male mice were submitted to single or repeated (7 days) sildenafil administration (2.5, 5, 10 and 20 mg/kg). Thirty minutes later, PILO was injected and mice were further evaluated for 1 h for seizure activity. Sildenafil induced a dose- and time-progressive proconvulsant effect in PILO-induced seizures. Sildenafil also potentiated the inhibitory effect of PILO in AChE activity and induced a further increase in nitrite levels and pro-oxidative markers, mainly in the hippocampus. Repeated sildenafil treatment also increased the hippocampal expression of iNOS and nNOS isoforms, while the blockade of muscarinic receptors attenuated both sildenafil-induced proconvulsant effect and brain nitrite changes. Our data firstly demonstrated the proconvulsant effect of sildenafil in PILO-model of seizures. This effect seems to be related to an increased cholinergic-nitrergic tone and pro-oxidative brain changes. Also, our findings advert to caution in using sildenafil for patients suffering from neurological conditions that reduces seizure threshold, such as epilepsy.


Asunto(s)
Convulsiones/etiología , Citrato de Sildenafil/efectos adversos , Citrato de Sildenafil/farmacología , Acetilcolinesterasa/metabolismo , Animales , GMP Cíclico/metabolismo , Hipocampo/efectos de los fármacos , Masculino , Ratones , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Inhibidores de Fosfodiesterasa 5/farmacología , Pilocarpina/farmacología , Especies Reactivas de Oxígeno/metabolismo , Convulsiones/fisiopatología , Citrato de Sildenafil/metabolismo
4.
Biomed Pharmacother ; 109: 429-439, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30399578

RESUMEN

Kindling is a model for studying epileptogenesis and associated neuropsychiatric conditions. The antiepileptic drug levetiracetam (LEV) presents anti-kindling properties, but some severe neuropsychiatric events, especially depression, have been associated with its use in epileptic patients. The positive modulation of glucagon-like peptide-1 (GLP-1) receptors emerged as a potential target for the treatment of epilepsy and other neurological disorders. Here, we investigated behavioral and neurochemical effects of liraglutide (LIRA), a GLP-1 receptor agonist, alone or combined with LEV in mice subjected to PTZ-induced kindling. Male mice received PTZ on alternate days for 21 days. Before PTZ, the animals received LIRA, LEV (alone or in combination with LIRA) or saline. After seizures staging according to Racine's scale, behavioral evaluations were performed to verify anxiety-, depressive-like and cognitive performance. Brain oxidative alterations and BDNF levels were also measured. LEV showed anti-kindling properties, but aggravated depressive-like behavior in PTZ-kindling. In control conditions, LEV induced a pro-depressant effect and impaired avoidance memory retention. LIRA delayed but did not prevent the full kindling development. LIRA prevented the depressive-like behavior induced by PTZ kindling and PTZ + LEV. LEV + LIRA protected against PTZ-induced anxiety-like alterations and impairments in locomotion and cognition. Furthermore, LEV + LIRA reduced nitrite levels and lipid peroxidation in the hippocampus and prefrontal cortex, while it increased reduced glutathione levels in all evaluated brain areas. LIRA or LEV + LIRA increased hippocampal BDNF levels. In conclusion, our results showed that LIRA can be a promising adjunctive therapy for epilepsy-related neuropsychiatric comorbidities and to improve the management of antiepileptic drug associated behavioral adverse effects.


Asunto(s)
Antioxidantes/metabolismo , Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Encéfalo/metabolismo , Péptido 1 Similar al Glucagón/agonistas , Excitación Neurológica/metabolismo , Levetiracetam/administración & dosificación , Liraglutida/administración & dosificación , Animales , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Encéfalo/efectos de los fármacos , Comorbilidad , Quimioterapia Combinada , Excitación Neurológica/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Ratones , Pentilenotetrazol/toxicidad , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...