Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 239: 118501, 2020 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-32473562

RESUMEN

We report here the analysis of vibrational properties of the ZnMoO4 by using theoretical and experimental approaches, well as results of high pressure experiments in this system. The analysis of the lattice dynamics calculations through the classical rigid ion model, was applied to determine the mode assignment in the triclinic phase of the ZnMoO4. Additionally, the experimental high-pressure Raman spectra of the ZnMoO4 were carried out from 0 GPa up to 6.83 GPa to shed light on the structural stability of this system. The pressure-dependent studies showed that this crystal undergoes a first order phase transition at around 1.05 GPa. The Raman spectrum analysis of the new phase shows a significant change in the number of modes for the spectral range of 20-1000 cm-1. The instability of this phase occurs due to the decrease of the MoO bond lengths in the high-pressure phase, connected with tilting and/or rotations of the MoO4 tetrahedra leading to a disorder at the MoO4 sites. The second and third phase transformations were observed, respectively, at about 2.9 GPa and 4.77 GPa, with strong evidences, in the Raman spectra, of crystal symmetry change. The principal component analysis (PCA) and the hierarchical cluster analysis (HCA) were used in order to infer the intervals of pressure where the different phases do exist. Discussion about the number of non equivalent sites for Mo ions and the kind of coordination for molybdenum atoms is also furnished.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 224: 117340, 2020 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-31330420

RESUMEN

This work reports a theoretical and experimental study on the electronic and vibrational properties of Bi2(MoO4)3. First-principle calculations were applied to increase the understanding on the properties of the chemical composition through the energy bands. The conduction band minimum (CBM) is found at the high symmetric Γ-point, while the valence-band maximum (VBM) is located between the Z and the Γ-points. Therefore, these facts confirm that the Bi2(MoO4)3 crystal is a semiconductor compound with an indirect band-gap of about 2.1 eV. Moreover, lattice dynamic properties were calculated using density functional perturbation theory (DFPT) in order to assign the experimental Raman bands. In addition, we performed temperature-dependent Raman spectroscopic studies in the Bi2(MoO4)3 crystals to obtain information on structural changes induced by effects of the temperature change. From the changes observed in the Raman spectra phase transitions at ∼ 668 and 833 K were inferred, with the last one possibly related to the disorder due to the heating process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...