Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antonie Van Leeuwenhoek ; 116(9): 867-882, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37316742

RESUMEN

Aspergillus niger is widely used as a cell factory for the industrial production of enzymes. Previously, it was shown that deletion of α-1-3 glucan synthase genes results in smaller micro-colonies in liquid cultures of Aspergillus nidulans. Also, it has been shown that small wild-type Aspergillus niger micro-colonies secrete more protein than large mirco-colonies. We here assessed whether deletion of the agsC or agsE α-1-3 glucan synthase genes results in smaller A. niger micro-colonies and whether this is accompanied by a change in protein secretion. Biomass formation was not affected in the deletion strains but pH of the culture medium had changed from 5.2 in the case of the wild-type to 4.6 and 6.4 for ΔagsC and ΔagsE, respectively. The diameter of the ΔagsC micro-colonies was not affected in liquid cultures. In contrast, diameter of the ΔagsE micro-colonies was reduced from 3304 ± 338 µm to 1229 ± 113 µm. Moreover, the ΔagsE secretome was affected with 54 and 36 unique proteins with a predicted signal peptide in the culture medium of MA234.1 and the ΔagsE, respectively. Results show that these strains have complementary cellulase activity and thus may have complementary activity on plant biomass degradation. Together, α-1-3 glucan synthesis (in)directly impacts protein secretion in A. niger.


Asunto(s)
Aspergillus niger , Secretoma , Aspergillus niger/genética , Aspergillus niger/metabolismo , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
2.
mBio ; 14(1): e0087022, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36629410

RESUMEN

The fungus Aspergillus niger is among the most abundant fungi in the world and is widely used as a cell factory for protein and metabolite production. This fungus forms asexual spores called conidia that are used for dispersal. Notably, part of the spores and germlings aggregate in an aqueous environment. The aggregated conidia/germlings give rise to large microcolonies, while the nonaggregated spores/germlings result in small microcolonies. Here, it is shown that small microcolonies release a larger variety and quantity of secreted proteins compared to large microcolonies. Yet, the secretome of large microcolonies has complementary cellulase activity with that of the small microcolonies. Also, large microcolonies are more resistant to heat and oxidative stress compared to small microcolonies, which is partly explained by the presence of nongerminated spores in the core of the large microcolonies. Together, it is proposed that heterogeneity in germination and aggregation has evolved to form a population of different sized A. niger microcolonies, thereby increasing stress survival and producing a meta-secretome more optimally suited to degrade complex substrates. IMPORTANCE Aspergillus niger can form microcolonies of different size due to partial aggregation of spores and germlings. So far, this heterogeneity was considered a negative trait by the industry. We here, however, show that heterogeneity in size within a population of microcolonies is beneficial for food degradation and stress survival. This functional heterogeneity is not only of interest for the industry to make blends of enzymes (e.g., for biofuel or bioplastic production) but could also play a role in nature for effective nutrient cycling and survival of the fungus.


Asunto(s)
Aspergillus niger , Calor , Aspergillus niger/metabolismo , Esporas Fúngicas/metabolismo , Proteínas Fúngicas/metabolismo , Agua/metabolismo
3.
Chemistry ; 29(1): e202202616, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36181715

RESUMEN

Solid-state NMR (ssNMR) spectroscopy facilitates the non-destructive characterization of structurally heterogeneous biomolecules in their native setting, for example, comprising proteins, lipids and polysaccharides. Here we demonstrate the utility of high and ultra-high field 1 H-detected fast MAS ssNMR spectroscopy, which exhibits increased sensitivity and spectral resolution, to further elucidate the atomic-level composition and structural arrangement of the cell wall of Schizophyllum commune, a mushroom-forming fungus from the Basidiomycota phylum. These advancements allowed us to reveal that Cu(II) ions and the antifungal peptide Cathelicidin-2 mainly bind to cell wall proteins at low concentrations while glucans are targeted at high metal ion concentrations. In addition, our data suggest the presence of polysaccharides containing N-acetyl galactosamine (GalNAc) and proteins, including the hydrophobin proteins SC3, shedding more light on the molecular make-up of cells wall as well as the positioning of the polypeptide layer. Obtaining such information may be of critical relevance for future research into fungi in material science and biomedical contexts.


Asunto(s)
Péptidos , Proteínas , Proteínas/química , Espectroscopía de Resonancia Magnética , Péptidos/análisis , Polisacáridos/química , Pared Celular/química
4.
ACS Chem Biol ; 17(12): 3515-3526, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36414265

RESUMEN

Fungal and bacterial pathogens causing lung infections often use lectins to mediate adhesion to glycoconjugates at the surface of host tissues. Given the rapid emergence of resistance to the treatments in current use, ß-propeller lectins such as FleA from Aspergillus fumigatus, SapL1 from Scedosporium apiospermum, and BambL from Burkholderia ambifaria have become appealing targets for the design of anti-adhesive agents. In search of novel and cheap anti-infectious agents, we synthesized multivalent compounds that can display up to 20 units of fucose, the natural ligand. We obtained nanomolar inhibitors that are several orders of magnitude stronger than their monovalent analogue according to several biophysical techniques (i.e., fluorescence polarization, isothermal titration calorimetry, and bio-layer interferometry). The reason for high affinity might be attributed to a strong aggregating mechanism, which was examined by analytical ultracentrifugation. Notably, the fucosylated inhibitors reduced the adhesion of A. fumigatus spores to lung epithelial cells when administered 1 h before or after the infection of human lung epithelial cells. For this reason, we propose them as promising anti-adhesive drugs for the prevention and treatment of aspergillosis and related microbial lung infections.


Asunto(s)
Adhesivos , Lectinas , Humanos , Lectinas/farmacología , Lectinas/química , Fucosa/química , Aspergillus fumigatus , Pulmón
5.
J Fungi (Basel) ; 8(8)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35893126

RESUMEN

Germination of conidia is an essential process within the Aspergillus life cycle and plays a major role during the infection of hosts. Conidia are able to avoid detection by the majority of leukocytes when dormant. Germination can cause severe health problems, specifically in immunocompromised people. Aspergillosis is most often caused by Aspergillus fumigatus (A. fumigatus) and affects neutropenic patients, as well as people with cystic fibrosis (CF). These patients are often unable to effectively detect and clear the conidia or hyphae and can develop chronic non-invasive and/or invasive infections or allergic inflammatory responses. Current treatments with (tri)azoles can be very effective to combat a variety of fungal infections. However, resistance against current azoles has emerged and has been increasing since 1998. As a consequence, patients infected with resistant A. fumigatus have a reported mortality rate of 88% to 100%. Especially with the growing number of patients that harbor azole-resistant Aspergilli, novel antifungals could provide an alternative. Aspergilloses differ in defining characteristics, but germination of conidia is one of the few common denominators. By specifically targeting conidial germination with novel antifungals, early intervention might be possible. In this review, we propose several morphotypes to disrupt conidial germination, as well as potential targets. Hopefully, new antifungals against such targets could contribute to disturbing the ability of Aspergilli to germinate and grow, resulting in a decreased fungal burden on patients.

6.
J Fungi (Basel) ; 8(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35049988

RESUMEN

Biofilm formation during infections with the opportunistic pathogen Aspergillus fumigatus can be very problematic in clinical settings, since it provides the fungal cells with a protective environment. Resistance against drug treatments, immune recognition as well as adaptation to the host environment allows fungal survival in the host. The exact molecular mechanisms behind most processes in the formation of biofilms are unclear. In general, the formation of biofilms can be categorized roughly in a few stages; adhesion, conidial germination and development of hyphae, biofilm maturation and cell dispersion. Fungi in biofilms can adapt to the in-host environment. These adaptations can occur on a level of phenotypic plasticity via gene regulation. However, also more substantial genetic changes of the genome can result in increased resistance and adaptation in the host, enhancing the survival chances of fungi in biofilms. Most research has focused on the development of biofilms. However, to tackle developing microbial resistance and adaptation in biofilms, more insight in mechanisms behind genetic adaptations is required to predict which defense mechanisms can be expected. This can be helpful in the development of novel and more targeted antifungal treatments to combat fungal infections.

7.
Curr Protoc ; 1(5): e122, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33950584

RESUMEN

Malassezia spp. are lipid-dependent yeasts that have been related to skin mycobiota and dermatological and systemic diseases. Study of lipid droplets (LDs) is relevant to elucidate the unknown role of these organelles in Malassezia and to gain a broader overview of lipid metabolism in Malassezia. Here, we standardized two protocols for the analysis of LDs in M. pachydermatis and M. globosa. The first describes co-staining for confocal laser-scanning fluorescence microscopy, and the second details extraction and purification of LDs. The double stain is achieved with three different neutral lipid fluorophores, namely Nile Red, BODIPY™ 493/503, and HCS LipidTOX™ Deep Red Neutral, in combination with Calcofluor White. For LD extraction, cell wall rupture is conducted using Trichoderma harzianum enzymes and cycles of vortexing with zirconium beads. LD purification is performed in a three-step ultracentrifugation process. These standardizations will contribute to the study of the dynamics, morphology, and composition of LDs in Malassezia. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Lipid droplet fluorescence staining Basic Protocol 2: Lipid droplet extraction and purification Support Protocol: Malassezia spp. culture conditions.


Asunto(s)
Malassezia , Hypocreales , Gotas Lipídicas
8.
Appl Microbiol Biotechnol ; 105(5): 1953-1964, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33576886

RESUMEN

Therapeutic options to treat invasive fungal infections are still limited. This makes the development of novel antifungal agents highly desirable. Naturally occurring antifungal peptides represent valid candidates, since they are not harmful for human cells and are endowed with a wide range of activities and their mechanism of action is different from that of conventional antifungal drugs. Here, we characterized for the first time the antifungal properties of novel peptides identified in human apolipoprotein B. ApoB-derived peptides, here named r(P)ApoBLPro, r(P)ApoBLAla and r(P)ApoBSPro, were found to have significant fungicidal activity towards Candida albicans (C. albicans) cells. Peptides were also found to be able to slow down metabolic activity of Aspergillus niger (A. niger) spores. In addition, experiments were carried out to clarify the mechanism of fungicidal activity of ApoB-derived peptides. Peptides immediately interacted with C. albicans cell surfaces, as indicated by fluorescence live cell imaging analyses, and induced severe membrane damage, as indicated by propidium iodide uptake induced upon treatment of C. albicans cells with ApoB-derived peptides. ApoB-derived peptides were also tested on A. niger swollen spores, initial hyphae and branched mycelium. The effects of peptides were found to be more severe on swollen spores and initial hyphae compared to mycelium. Fluorescence live cell imaging analyses confirmed peptide internalization into swollen spores with a consequent accumulation into hyphae. Altogether, these findings open interesting perspectives to the application of ApoB-derived peptides as effective antifungal agents. KEY POINTS: Human cryptides identified in ApoB are effective antifungal agents. ApoB-derived cryptides exert fungicidal effects towards C. albicans cells. ApoB-derived cryptides affect different stages of growth of A. niger. Graphical abstract.


Asunto(s)
Antifúngicos , Péptidos Catiónicos Antimicrobianos , Antifúngicos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Apolipoproteínas B , Candida albicans , Humanos , Hifa , Pruebas de Sensibilidad Microbiana
9.
Front Microbiol ; 11: 534118, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33123097

RESUMEN

Dectin-1 and ephrin type-A receptor 2 (EphA2) receptors recognize ß-glucan present in the fungal cell wall. Inhibition of Dectin-1 with the monoclonal 2a11 antibody was shown to reduce internalization of conidia of the human pathogen Aspergillus fumigatus into epithelial cells. In this study, we investigated the role of the EphA2 receptor present on A549 epithelial type II lung cells in the interaction with A. fumigatus conidia. We assessed whether EphA2 is involved in association and internalization of conidia by receptor inhibition by an antibody or by using the kinase inhibitor dasatinib. A 50% reduction of internalization of conidia was observed when this receptor was blocked with either the EphA2-specific monoclonal antibody or dasatinib, which was similar when Dectin-1 was inhibited with the 2a11 monoclonal antibody. Inhibition of both receptors reduced the internalization to 40%. EphA2 inhibition was also assessed in a hydrophobin deletion strain (ΔrodA) that exposes more ß-glucan and a dihydroxynaphthalene (DHN)-melanin deletion strain (ΔpksP) that exposes more glucosamine and glycoproteins. The ΔrodA strain behaved similar to the wild-type strain with or without EphA2 inhibition. In contrast, the ΔpksP mutant showed an increase in association to the A549 cells and a decrease in internalization. Internalization was not further decreased by EphA2 inhibition. Taken together, the presence of DHN-melanin in the spore cell wall results in an EphA2-dependent internalization of conidia of A. fumigatus into A549 cells.

10.
J Fungi (Basel) ; 6(3)2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32872112

RESUMEN

Malassezia is a lipid-dependent genus of yeasts known for being an important part of the skin mycobiota. These yeasts have been associated with the development of skin disorders and cataloged as a causal agent of systemic infections under specific conditions, making them opportunistic pathogens. Little is known about the host-microbe interactions of Malassezia spp., and unraveling this implies the implementation of infection models. In this mini review, we present different models that have been implemented in fungal infections studies with greater attention to Malassezia spp. infections. These models range from in vitro (cell cultures and ex vivo tissue), to in vivo (murine models, rabbits, guinea pigs, insects, nematodes, and amoebas). We additionally highlight the alternative models that reduce the use of mammals as model organisms, which have been gaining importance in the study of fungal host-microbe interactions. This is due to the fact that these systems have been shown to have reliable results, which correlate with those obtained from mammalian models. Examples of alternative models are Caenorhabditis elegans, Drosophila melanogaster, Tenebrio molitor, and Galleria mellonella. These are invertebrates that have been implemented in the study of Malassezia spp. infections in order to identify differences in virulence between Malassezia species.

11.
Artículo en Inglés | MEDLINE | ID: mdl-32760678

RESUMEN

Malassezia yeasts are lipid dependent and part of the human and animal skin microbiome. However, they are also associated with a variety of dermatological conditions and even cause systemic infections. How these yeasts can live as commensals on the skin and switch to a pathogenic stage has long been a matter of debate. Lipids are important cellular molecules, and understanding the lipid metabolism and composition of Malassezia species is crucial to comprehending their biology and host-microbe interaction. Here, we investigated the lipid composition of Malassezia strains grown to the stationary phase in a complex Dixon medium broth. In this study, we perform a lipidomic analysis of a subset of species; in addition, we conducted a gene prediction analysis for the detection of lipid metabolic proteins. We identified 18 lipid classes and 428 lipidic compounds. The most commonly found lipids were triglycerides (TAG), sterol (CH), diglycerides (DG), fatty acids (FAs), phosphatidylcholine (PC), phosphatidylethanolamine (PE), ceramides, cholesteryl ester (CE), sphingomyelin (SM), acylcarnitine, and lysophospholipids. Particularly, we found a low content of CEs in Malassezia furfur, atypical M. furfur, and Malassezia pachydermatis and undetectable traces of these components in Malassezia globosa, Malassezia restricta, and Malassezia sympodialis. Remarkably, uncommon lipids in yeast, like diacylglyceryltrimethylhomoserine and FA esters of hydroxyl FAs, were found in a variable concentration in these Malassezia species. The latter are bioactive lipids recently reported to have antidiabetic and anti-inflammatory properties. The results obtained can be used to discriminate different Malassezia species and offer a new overview of the lipid composition of these yeasts. We could confirm the presence and the absence of certain lipid-biosynthesis genes in specific species. Further analyses are necessary to continue disclosing the complex lipidome of Malassezia species and the impact of the lipid metabolism in connection with the host interaction.


Asunto(s)
Malassezia , Animales , Humanos , Lipidómica , Lípidos , Malassezia/genética , Saccharomyces cerevisiae
12.
Med Mycol ; 58(8): 1073-1084, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-32236485

RESUMEN

Fungal infections in humans are increasing worldwide and are currently mostly treated with a relative limited set of antifungals. Resistance to antifungals is increasing, for example, in Aspergillus fumigatus and Candida auris, and expected to increase for many medically relevant fungal species in the near future. We have developed and patented a set of cathelicidin-inspired antimicrobial peptides termed 'PepBiotics'. These peptides were initially selected for their bactericidal activity against clinically relevant Pseudomonas aeruginosa and Staphylococcus aureus isolates derived from patients with cystic fibrosis and are active against a wide range of bacteria (ESKAPE pathogens). We now report results from studies that were designed to investigate the antifungal activity of PepBiotics against a set of medically relevant species encompassing species of Aspergillus, Candida, Cryptococcus, Fusarium, Malassezia, and Talaromyces. We characterized a subset of PepBiotics and show that these peptides strongly affected metabolic activity and/or growth of a set of medically relevant fungal species, including azole-resistant A. fumigatus isolates. PepBiotics showed a strong inhibitory activity against a large variety of filamentous fungi and yeasts species at low concentrations (≤1 µM) and were fungicidal for at least a subset of these fungal species. Interestingly, the concentration of PepBiotics required to interfere with growth or metabolic activity varied between different fungal species or even between isolates of the same fungal species. This study shows that PepBiotics display strong potential for use as novel antifungal compounds to fight a large variety of clinically relevant fungal species.


Asunto(s)
Antifúngicos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Secuencia de Aminoácidos , Animales , Antifúngicos/química , Péptidos Catiónicos Antimicrobianos/química , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/crecimiento & desarrollo , Relación Dosis-Respuesta a Droga , Farmacorresistencia Fúngica/efectos de los fármacos , Hongos/clasificación , Hongos/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Micosis/microbiología , Especificidad de la Especie , Catelicidinas
13.
Sci Rep ; 10(1): 4860, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32184419

RESUMEN

The opportunistic pathogen Malassezia pachydermatis causes bloodstream infections in preterm infants or individuals with immunodeficiency disorders and has been associated with a broad spectrum of diseases in animals such as seborrheic dermatitis, external otitis and fungemia. The current approaches to treat these infections are failing as a consequence of their adverse effects, changes in susceptibility and antifungal resistance. Thus, the identification of novel therapeutic targets against M. pachydermatis infections are highly relevant. Here, Gene Essentiality Analysis and Flux Variability Analysis was applied to a previously reported M. pachydermatis metabolic network to identify enzymes that, when absent, negatively affect biomass production. Three novel therapeutic targets (i.e., homoserine dehydrogenase (MpHSD), homocitrate synthase (MpHCS) and saccharopine dehydrogenase (MpSDH)) were identified that are absent in humans. Notably, L-lysine was shown to be an inhibitor of the enzymatic activity of MpHCS and MpSDH at concentrations of 1 mM and 75 mM, respectively, while L-threonine (1 mM) inhibited MpHSD. Interestingly, L- lysine was also shown to inhibit M. pachydermatis growth during in vitro assays with reference strains and canine isolates, while it had a negligible cytotoxic activity on HEKa cells. Together, our findings form the bases for the development of novel treatments against M. pachydermatis infections.


Asunto(s)
Dermatomicosis/microbiología , Proteínas Fúngicas/antagonistas & inhibidores , Fungemia/microbiología , Lisina/farmacología , Malassezia/crecimiento & desarrollo , Treonina/farmacología , Animales , Línea Celular , Dermatomicosis/tratamiento farmacológico , Dermatomicosis/veterinaria , Relación Dosis-Respuesta a Droga , Fungemia/tratamiento farmacológico , Genes Esenciales , Homoserina Deshidrogenasa/antagonistas & inhibidores , Humanos , Malassezia/efectos de los fármacos , Oxo-Ácido-Liasas/antagonistas & inhibidores , Sacaropina Deshidrogenasas/antagonistas & inhibidores
14.
Mol Immunol ; 105: 260-269, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30562646

RESUMEN

At the lung lining innate defenses protect our lungs against inhaled fungal cells that could pose a threat to our health. These defenses are comprised of mucociliary clearance, soluble effector molecules and roaming phagocytic cells, such as macrophages and neutrophils. How important each of these defenses is during fungal clearance depends on the specific fungal pathogen in question and on the stage of infection. In this study the localization and antifungal activity of the lung surfactant protein D (SP-D) was studied in an environment mimicking the lung lining. To this end Calu-3 cells were grown on an air-liquid interface allowing them to polarize and to produce mucus at their apical surface. Additionally, neutrophils were added to study their role in fungal clearance. Two fungal pathogens were used for these experiments: Candida albicans and Aspergillus fumigatus, both of clinical relevance. During fungal infection SP-D localized strongly to both fungal surfaces and stayed bound through the different stages of infection. Furthermore, SP-D decreased fungal adhesion to the epithelium and increased fungal clearance by neutrophils from the epithelial surface. These findings suggest that SP-D plays an important role at the different stages of pulmonary defense against fungal intruders.


Asunto(s)
Antifúngicos/inmunología , Aspergilosis/inmunología , Aspergillus fumigatus/inmunología , Candida albicans/inmunología , Candidiasis/inmunología , Pulmón/inmunología , Proteína D Asociada a Surfactante Pulmonar/inmunología , Mucosa Respiratoria/inmunología , Antifúngicos/química , Aspergilosis/patología , Candidiasis/patología , Línea Celular , Humanos , Pulmón/microbiología , Proteína D Asociada a Surfactante Pulmonar/química , Mucosa Respiratoria/microbiología
15.
BMC Microbiol ; 18(1): 118, 2018 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-30223790

RESUMEN

BACKGROUND: Aspergillus fumigatus is a ubiquitous saprotrophic fungus and an opportunistic pathogen of humans and animals. Humans and animals can inhale hundreds of A. fumigatus spores daily. Normally this is harmless for humans, but in case of immunodeficiency, invasive pulmonary aspergillosis (IPA) can develop with a high mortality rate. A. fumigatus also causes non-invasive mycoses like sino-nasal aspergillosis (SNA) in dogs. RESULTS: In this study we compared A. fumigatus isolates from humans with suspected IPA, dogs with SNA, and a set of environmental isolates. Phylogenetic inference based on calmodulin (CaM) and beta-tubulin (benA) sequences did not reveal A. fumigatus sub-groups linked to the origin of the isolates. Genotyping and microsatellite analysis showed that each dog was infected by one A. fumigatus genotype, whereas human patients had mixed infections. Azole resistance was determined by antifungal susceptibility testing and sequencing of the cyp51A gene. A total of 12 out of 29 human isolates and 1 out of 27 environmental isolates were azole resistant. Of the azole resistant strains, 11 human isolates showed TR34/L98H (n = 6) or TR46/Y121F/T289A (n = 5). Phenotypically, isolates from dogs were more variable in growth speed and morphology when compared to those isolated from human and the environment. CONCLUSIONS: 1. A. fumigatus from dogs with SNA are phenotypically very diverse in contrast to their environmental and human counterparts. 2. Phenotypic variability can be induced during the chronic infection process in the sinus of the dogs. The basis of this heterogeneity might be due to genomic differences and/or epigenetic variations. 3. Differences in dogs is a could be a result of within-host adaption and might be triggered by environmental factors in the sinus, however this hypothesis still needs to be tested.


Asunto(s)
Aspergilosis/microbiología , Aspergilosis/veterinaria , Aspergillus fumigatus/aislamiento & purificación , Enfermedades de los Perros/microbiología , Animales , Antifúngicos/farmacología , Aspergillus fumigatus/clasificación , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/genética , Azoles/farmacología , Perros , Microbiología Ambiental , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genotipo , Humanos , Pruebas de Sensibilidad Microbiana , Fenotipo , Filogenia
16.
BMC Genomics ; 19(1): 534, 2018 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-30005605

RESUMEN

BACKGROUND: Aspergillus fumigatus is the main causative agent of aspergillosis. Infections rarely occur in immunocompetent individuals, indicating efficient clearance of conidia by pulmonary defense mechanisms. Other aspergilli like Aspergillus niger also cause infections but to a much lesser extent. Our previous studies showed that A. fumigatus and A. niger have different behavior in the presence of type II alveolar A549 epithelial cells. A. fumigatus conidia are more efficiently internalized by these cells and germination is delayed when compared to A. niger. In addition, hyphae that have escaped the epithelial cells grow parallel to the epithelium, while A. niger grows away from this cell layer. RESULTS: Here it is shown that global gene expression of A. fumigatus and A. niger is markedly different upon contact with A549 cells. A total of 545 and 473 genes of A. fumigatus and A. niger, respectively, were differentially expressed when compared to growth in the absence of A549 cells. Notably, only 53 genes (approximately 10%) were shared in these gene sets. The different response was also illustrated by the fact that only 4 out of 75 GO terms were shared that were enriched in the differentially expressed gene sets. The orthologues of A. fumigatus genes involved in hypoxia regulation and heat shock were also up-regulated in A. niger, whereas thioredoxin reductase and allergen genes were found up-regulated in A. fumigatus but down-regulated in A. niger. Infection with A. fumigatus resulted in only 62 up and 47 down-regulated genes in A549. These numbers were 17 and 34 in the case of A. niger. GO terms related with immune response were down-regulated upon exposure to A. fumigatus but not in the case of A. niger. This indicates that A. fumigatus reprograms A549 to be less immunologically alert. CONCLUSIONS: Our dual transcriptomic analysis supports earlier observations of a marked difference in life style between A. fumigatus and A. niger when grown in the presence of type II epithelial cells. The results indicate important differences in gene expression, amongst others down regulation of immune response genes in lung epithelial cells by A. fumigatus but not by A niger.


Asunto(s)
Aspergillus fumigatus/patogenicidad , Aspergillus niger/patogenicidad , Células A549 , Regulación hacia Abajo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , ARN/química , ARN/aislamiento & purificación , ARN/metabolismo , Análisis de Secuencia de ARN , Regulación hacia Arriba
17.
Front Microbiol ; 8: 1772, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28959251

RESUMEN

Malassezia species are lipophilic and lipid-dependent yeasts belonging to the human and animal microbiota. Typically, they are isolated from regions rich in sebaceous glands. They have been associated with dermatological diseases such as seborrheic dermatitis, pityriasis versicolor, atopic dermatitis, and folliculitis. The genomes of Malassezia globosa, Malassezia sympodialis, and Malassezia pachydermatis lack the genes related to fatty acid synthesis. Here, the lipid-synthesis pathways of these species, as well as of Malassezia furfur, and of an atypical M. furfur variant were reconstructed using genome data and Constraints Based Reconstruction and Analysis. To this end, the genomes of M. furfur CBS 1878 and the atypical M. furfur 4DS were sequenced and annotated. The resulting Enzyme Commission numbers and predicted reactions were similar to the other Malassezia strains despite the differences in their genome size. Proteomic profiling was utilized to validate flux distributions. Flux differences were observed in the production of steroids in M. furfur and in the metabolism of butanoate in M. pachydermatis. The predictions obtained via these metabolic reconstructions also suggested defects in the assimilation of palmitic acid in M. globosa, M. sympodialis, M. pachydermatis, and the atypical variant of M. furfur, but not in M. furfur. These predictions were validated via physiological characterization, showing the predictive power of metabolic network reconstructions to provide new clues about the metabolic versatility of Malassezia.

18.
Front Microbiol ; 7: 438, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27092115

RESUMEN

Representatives of the genus Aspergillus are opportunistic fungal pathogens. Their conidia can reach the alveoli by inhalation and can give rise to infections in immunocompromised individuals. Aspergillus fumigatus is the causal agent of invasive aspergillosis in nearly 90% of the cases. It is not yet well-established what makes this fungus more pathogenic than other aspergilli such as A. niger. Here, we show that A. fumigatus and A. niger conidia adhere with similar efficiency to lung epithelial A549 cells but A. fumigatus conidia internalized 17% more efficiently. Conidia of both aspergilli were taken up in phagolysosomes 8 h after the challenge. These organelles only acidified in the case of A. niger, which is probably due to the type of melanin coating of the conidia. Viability of both types of conidia was not affected after uptake in the phagolysosomes. Germination of A. fumigatus and A. niger conidia in the presence of epithelial cells was delayed when compared to conidia in the medium. However, germination of A. niger conidia was still higher than that of A. fumigatus 10 h after exposure to A549 cells. Remarkably, A. fumigatus hyphae grew mainly parallel to the epithelium, while growth direction of A. niger hyphae was predominantly perpendicular to the plane of the cells. Neutrophils reduced germination and hyphal growth of A. niger, but not of A fumigatus, in presence of epithelial cells. Taken together, efficient internalization, delayed germination, and hyphal growth parallel to the epithelium gives a new insight into what could be the causes for the success of A. fumigatus compared to A. niger as an opportunistic pathogen in the lung.

19.
Genome Announc ; 3(5)2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26472839

RESUMEN

Malassezia pachydermatis is a basidiomycetous yeast that causes infections in humans and animals. Here, we report the genome sequence of Malassezia pachydermatis strain CBS 1879, which will facilitate the study of mechanisms underlying pathogenicity of the only non-lipid-dependent Malasezzia species.

20.
J Innate Immun ; 7(4): 364-74, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25676601

RESUMEN

Aspergillus fumigatus is an important airborne fungal pathogen and a major cause of invasive fungal infections. Susceptible individuals become infected via the inhalation of dormant conidia. If the immune system fails to clear these conidia, they will swell, germinate and grow into large hyphal structures. Neutrophils are essential effector cells for controlling A. fumigatus infection. In general, opsonization of microbial particles is crucial for efficient phagocytosis and killing by neutrophils. Although the antibodies present in human serum do bind to all fungal morphotypes, we observed no direct antibody-mediated phagocytosis of A. fumigatus. We show that opsonization, phagocytosis and killing by neutrophils of A. fumigatus is complement-dependent. Using human sera depleted of key complement components, we investigated the contribution of the different complement initiation pathways in complement activation on the fungal surface. We describe the classical complement pathway as the main initiator of complement activation on A. fumigatus swollen conidia and germ tubes. Antibodies play an important role in complement activation and efficient innate recognition, phagocytosis and killing of A. fumigatus by neutrophils.


Asunto(s)
Aspergilosis/inmunología , Aspergillus fumigatus/inmunología , Vía Clásica del Complemento/inmunología , Neutrófilos/inmunología , Fagocitosis , Aspergilosis/patología , Humanos , Neutrófilos/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...