Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 9(10): e111059, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25357129

RESUMEN

Mesenchymal stem cells (MSCs) are viewed as safe, readily available and promising adult stem cells, which are currently used in several clinical trials. Additionally, their soluble-factor secretion and multi-lineage differentiation capacities place MSCs in the forefront of stem cell types with expected near-future clinical applications. In the present work MSCs were isolated from the umbilical cord matrix (Wharton's jelly) of human umbilical cord samples. The cells were thoroughly characterized and confirmed as bona-fide MSCs, presenting in vitro low generation time, high proliferative and colony-forming unit-fibroblast (CFU-F) capacity, typical MSC immunophenotype and osteogenic, chondrogenic and adipogenic differentiation capacity. The cells were additionally subjected to an oligodendroglial-oriented step-wise differentiation protocol in order to test their neural- and oligodendroglial-like differentiation capacity. The results confirmed the neural-like plasticity of MSCs, and suggested that the cells presented an oligodendroglial-like phenotype throughout the differentiation protocol, in several aspects sharing characteristics common to those of bona-fide oligodendrocyte precursor cells and differentiated oligodendrocytes.


Asunto(s)
Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Oligodendroglía/metabolismo , Cordón Umbilical/metabolismo , Gelatina de Wharton/metabolismo , Células Cultivadas , Humanos , Células Madre Mesenquimatosas/citología , Oligodendroglía/citología , Cordón Umbilical/citología , Gelatina de Wharton/citología
2.
Science ; 346(6207): 318-22, 2014 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-25324381

RESUMEN

Myelin-forming oligodendrocytes (OLs) are formed continuously in the healthy adult brain. In this work, we study the function of these late-forming cells and the myelin they produce. Learning a new motor skill (such as juggling) alters the structure of the brain's white matter, which contains many OLs, suggesting that late-born OLs might contribute to motor learning. Consistent with this idea, we show that production of newly formed OLs is briefly accelerated in mice that learn a new skill (running on a "complex wheel" with irregularly spaced rungs). By genetically manipulating the transcription factor myelin regulatory factor in OL precursors, we blocked production of new OLs during adulthood without affecting preexisting OLs or myelin. This prevented the mice from mastering the complex wheel. Thus, generation of new OLs and myelin is important for learning motor skills.


Asunto(s)
Encéfalo/citología , Proliferación Celular , Aprendizaje , Destreza Motora/fisiología , Vaina de Mielina/metabolismo , Oligodendroglía/fisiología , Animales , Encéfalo/metabolismo , Eliminación de Gen , Humanos , Masculino , Recuerdo Mental , Ratones , Ratones Transgénicos , Vaina de Mielina/genética , Oligodendroglía/citología , Oligodendroglía/metabolismo , Transmisión Sináptica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Development ; 141(7): 1553-61, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24598164

RESUMEN

Myelination allows rapid saltatory propagation of action potentials along the axon and is an essential prerequisite for the normal functioning of the nervous system. During peripheral nervous system (PNS) development, myelin-forming Schwann cells (SCs) generate radial lamellipodia to sort and ensheath axons. This process requires controlled cytoskeletal remodeling, and we show that SC lamellipodia formation depends on the function of profilin 1 (Pfn1), an actin-binding protein involved in microfilament polymerization. Pfn1 is inhibited upon phosphorylation by ROCK, a downstream effector of the integrin linked kinase pathway. Thus, a dramatic reduction of radial lamellipodia formation is observed in SCs lacking integrin-linked kinase or treated with the Rho/ROCK activator lysophosphatidic acid. Knocking down Pfn1 expression by lentiviral-mediated shRNA delivery impairs SC lamellipodia formation in vitro, suggesting a direct role for this protein in PNS myelination. Indeed, SC-specific gene ablation of Pfn1 in mice led to profound radial sorting and myelination defects, confirming a central role for this protein in PNS development. Our data identify Pfn1 as a key effector of the integrin linked kinase/Rho/ROCK pathway. This pathway, acting in parallel with integrin ß1/LCK/Rac1 and their effectors critically regulates SC lamellipodia formation, radial sorting and myelination during peripheral nervous system maturation.


Asunto(s)
Vaina de Mielina/fisiología , Nervios Periféricos/fisiología , Sistema Nervioso Periférico/fisiología , Profilinas/fisiología , Animales , Transporte Axonal/genética , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neurogénesis/genética , Neuropéptidos/fisiología , Seudópodos/genética , Células de Schwann/fisiología , Proteína de Unión al GTP rac1/fisiología
4.
Neuron ; 69(5): 918-29, 2011 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-21382552

RESUMEN

A fundamental feature of central nervous system development is that neurons are generated before glia. In the embryonic spinal cord, for example, a group of neuroepithelial stem cells (NSCs) generates motor neurons (MNs), before switching abruptly to oligodendrocyte precursors (OLPs). We asked how transcription factor OLIG2 participates in this MN-OLP fate switch. We found that Serine 147 in the helix-loop-helix domain of OLIG2 was phosphorylated during MN production and dephosphorylated at the onset of OLP genesis. Mutating Serine 147 to Alanine (S147A) abolished MN production without preventing OLP production in transgenic mice, chicks, or cultured P19 cells. We conclude that S147 phosphorylation, possibly by protein kinase A, is required for MN but not OLP genesis and propose that dephosphorylation triggers the MN-OLP switch. Wild-type OLIG2 forms stable homodimers, whereas mutant (unphosphorylated) OLIG2(S147A) prefers to form heterodimers with Neurogenin 2 or other bHLH partners, suggesting a molecular basis for the switch.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/fisiología , Neuronas Motoras/fisiología , Proteínas del Tejido Nervioso/metabolismo , Oligodendroglía/fisiología , Fosforilación/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Western Blotting , Células Cultivadas , Embrión de Pollo , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Transgénicos , Neuronas Motoras/citología , Proteínas del Tejido Nervioso/genética , Factor de Transcripción 2 de los Oligodendrocitos , Oligodendroglía/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...