Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(7): 10737-10749, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38206461

RESUMEN

Water body contamination by leachate originated from dumpsites is a concern for municipal solid waste (MSW) management. In this context, this study aimed to evaluate antioxidant system alterations and oxidative and genotoxic effects in Danio rerio (zebrafish) exposed to leachate from a closed dumpsite. Groups comprising 50 fish were exposed (96 h) to different leachate concentrations (5, 15, 30, and 50%) to evaluate effects on liver and brain superoxide dismutase (SOD), catalase (CAT), and glutathione-S-transferase (GST) activities and reduced glutathione (GSH) and metallothionein (MT) concentrations, as well as malondialdehyde (MDA) and protein carbonylation (PTC) levels. Blood genotoxicity was evaluated by the comet assay. The investigated dumpsite leachate pond presented high chloride concentrations (Cl-; 2288.4 ± 69.5 mg L-1) and high electrical conductivity (EC; 8434.0 mS cm-1), indicating the presence of leachate. Concerning Danio rerio exposure, higher SOD (37%), CAT (67%), and GST (39%) activities and higher GSH (57%) concentrations were observed in liver following exposure to 50% leachate, while decreased brain GST (42%) activities and GSH (90%) levels were observed at the same leachate concentration. A significant increase in the olive tail moment (OTM; 280%) indicative of genotoxicity in blood was observed. A principal component analysis indicated that increased enzymatic activities and high levels of both GSH and MT were not sufficient to prevent the accumulation of reactive oxygen species, resulting in PTC and genotoxicity. Therefore, leachate exposure causes sublethal Danio rerio effects, altering the antioxidant system, increasing ROS production, and leading to PTC and genotoxicity. The findings demonstrate the need to further develop sublethal level assessments in zebrafish using leachate from different sources to subsidize risk assessments regarding MSW management.


Asunto(s)
Perciformes , Contaminantes Químicos del Agua , Animales , Antioxidantes/metabolismo , Pez Cebra/metabolismo , Estrés Oxidativo , Contaminantes Químicos del Agua/toxicidad , Catalasa/metabolismo , Daño del ADN , Superóxido Dismutasa/metabolismo , Perciformes/metabolismo , Cloruros
2.
Environ Sci Pollut Res Int ; 30(11): 28459-28479, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36689115

RESUMEN

Cocaine (COC) use concerns are on the increase for both authorities and civil society. Despite this, it is important to investigate COC effects or those of its main metabolite, belzoylecgonine (BE), in consolidated aquatic model organisms, such as the zebrafish (Danio rerio). This (mini) review consists in an assessment regarding toxicological studies carried out employing zebrafish (embryos, larvae or adults) exposed to COC and/or BE indexed at the SCOPUS and Web of Science databases. Ten different endpoints were analyzed in both embryos and larvae, whereas only four were analyzed in adults. Of the 23 studies, only five investigated COC and/or BE effects following an environmental approach when exposing zebrafish, while most (18 studies) analyzed COC effects under a drug of abuse approach. Cocaine exposure was noted as altering the expression of several genes, such as those linked to COC transport proteins, dopamine receptors, SP substance production, the tachykinin system, and the tyrosine hydroxylase enzyme. BE exposure resulted in more oxidative and proteomic effects than COC in embryos. Cocaine abstinence resulted in hyperactivity associated with stereotypy in adult fish, in addition to reduced responses to visual stimuli to red light and neuronal development pattern alterations. Cocaine was noted as accumulating in zebrafish eyes, possibly due to melanin binding, and causing dose-response cardiac effects in both embryos and adults. Despite the different effects addressed by our survey, we emphasize the lack of COC and BE exposure assessments in zebrafish employing an environmental point of view.


Asunto(s)
Cocaína , Contaminantes Químicos del Agua , Animales , Pez Cebra , Proteómica , Embrión no Mamífero , Oxidación-Reducción , Larva , Contaminantes Químicos del Agua/metabolismo
3.
Environ Monit Assess ; 195(1): 243, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36576602

RESUMEN

The final disposal of municipal solid waste (MSW) in dumpsites is still a reality worldwide, especially in low- and middle-income countries, leading to leachate-contaminated zones. Therefore, the aim of this study was to carry out soil and leachate physicochemical, microbiological, and toxicological characterizations from a non-operational dumpsite. The L-01 pond samples presented the highest physicochemical parameters, especially chloride (Cl; 4101 ± 44.8 mg L-1), electrical conductivity (EC; 10,452 ± 0.1 mS cm-1), and chemical oxygen demand (COD; 760 ± 6.6 mg L-1) indicating the presence of leachate, explained by its close proximity to the landfill cell. Pond L-03 presented higher parameters compared to pond L-02, except for N-ammoniacal and phosphorus levels, explained by the local geological configuration, configured as a slope from the landfill cell towards L-03. Seven filamentous and/or yeast fungi genera were identified, including the opportunistic pathogenic fungi Candida krusei (4 CFU) in an outcrop sample. Regarding soil samples, Br, Se, and I were present at high concentrations leading to high soil contamination (CF ≤ 6). Pond L-02 presented the highest CF for Br (18.14 ± 18.41 mg kg-1) and I (10.63 ± 3.66 mg kg-1), while pond L-03 presented the highest CF for Se (7.60 ± 1.33 mg kg-1). The most severe lethal effect for Artemia salina was observed for L-03 samples (LC50: 79.91%), while only samples from L-01 were toxic to Danio rerio (LC50: 32.99%). The highest lethality for Eisenia andrei was observed for L-02 samples (LC50: 50.30%). The applied risk characterization indicates high risk of all proposed scenarios for both aquatic (RQ 375-909) and terrestrial environments (RQ > 1.4 × 105). These findings indicate that the investigated dumpsite is contaminated by both leachate and metals, high risks to living organisms and adjacent water resources, also potentially affecting human health.


Asunto(s)
Eliminación de Residuos , Contaminantes Químicos del Agua , Humanos , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Residuos Sólidos/análisis , Metales , Instalaciones de Eliminación de Residuos , Suelo
4.
Environ Monit Assess ; 194(3): 216, 2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35199242

RESUMEN

The final disposal of solid waste in dumpsites can result in the migration of leachate components through the soil, contaminating it as well as the groundwater. The purpose of this manuscript was to analyze the contamination of a dumpsite along with three unlined leachate ponds that operated for approximately 25 years. Soil, surface water from three leachate lagoons, and groundwater samples were collected. Chemical analyses such as chloride, ammonia nitrogen, and total organic carbon were performed. The present work also aimed at elaborating the local flow pattern map and the assessment of subsoil. The results showed local subsoil mostly clayey, also occurring a region of sandy predominance, and great variation of rocky outcrops depth. The groundwater flow occurs from the waste towards one of the leachate lagoons. The leachate lagoon located closer to deposited area presented the highest concentration of all contaminants measured. Groundwater and soil showed low ammonia nitrogen with a maximum value of 2 mg.L-1. Elevated chloride levels were detected in all matrices studied. In soil depth, the concentration varied ​​between 17 and 1270 mg.L-1 and in groundwater between 843 and 3,252 mg.L-1. Results suggest the migration of leachate components through the local soil. The concentration of total organic carbon measured in soil was of 10-982 mg.L-1, suggesting its natural presence.


Asunto(s)
Agua Subterránea , Eliminación de Residuos , Contaminantes Químicos del Agua , Brasil , Monitoreo del Ambiente/métodos , Agua Subterránea/análisis , Eliminación de Residuos/métodos , Suelo , Instalaciones de Eliminación de Residuos , Contaminantes Químicos del Agua/análisis
5.
Environ Sci Pollut Res Int ; 29(16): 23607-23618, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34811610

RESUMEN

Poultry litter is widely applied as a fertilizer even though it is one of the main antibiotic sources to agricultural soils. Long-term sublethal effects (56 days) on the antioxidant system of Eisenia andrei earthworms following exposure to fluoroquinolone-contaminated poultry litter (enrofloxacin + ciprofloxacin) at 5.0, 10, and 20 g kg-1 were evaluated. The following biomarkers were assessed: superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), reduced glutathione (GSH), and a lipid peroxidation (LPO) proxy. Significant CAT and SOD increases, and a moderate positive correlation (ρ = 0.67, p < 0.05) between these enzymes was observed. Glutathione-S-transferase levels increased significantly at 10 g kg-1, while GSH exhibited a dose-dependent response at 5.0 mg kg-1 (4-106%), 10 mg kg-1 (28-330 %), and 20 mg kg-1 (45-472%). LPO levels exhibited a decreasing trend with increasing poultry litter concentrations of 8-170% (5.0 g kg-1), 7-104% (10 mg kg-1), and 3-6% (20 mg kg-1). A principal component analysis (PCA) highlighted increased SOD and CAT activities, possibly due to increased reactive oxygen species (ROS) concentrations. Biological health status assessments based on the biomarker response index indicate major alterations in the first month of exposure and becoming moderate in the second month. These findings indicate an antioxidant system attenuation trend. It is possible, however, that successive poultry litter applications may reduce the long-term recovery capacity of the evaluated biomarkers.


Asunto(s)
Oligoquetos , Contaminantes del Suelo , Animales , Antibacterianos/farmacología , Antioxidantes/metabolismo , Catalasa/metabolismo , Glutatión/metabolismo , Glutatión Transferasa/metabolismo , Estado de Salud , Peroxidación de Lípido , Oligoquetos/metabolismo , Estrés Oxidativo , Aves de Corral , Contaminantes del Suelo/análisis , Superóxido Dismutasa/metabolismo
6.
Environ Pollut ; 267: 115570, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32916435

RESUMEN

Triclocarban (TCC) is a contaminant of emerging concern widely applied as an antimicrobial in personal care products and introduced into the terrestrial environment through the application of biosolids (i.e., treated sewage sludge) in agriculture. Displaying the potential to bioaccumulate in the food chain and a high half-life in the soil, the presence of this compound in the environment may lead to potential ecological risks. In this context, TCC toxicity assessments in Eisenia andrei earthworms were carried out through acute, avoidance and chronic tests following cytotoxicity, antioxidant system, i.e. acatalase (CAT), glutathione-S-transferase (GST), glutathione (GSH), lipid peroxidation (LPO), and DNA damage (comet assay) evaluations. An LC50 of 3.3 ± 1.6 mg cm-2 in the acute contact test and an EC50 of 1.92 ± 0.31 mg kg-1 in the avoidance test during 72 h and 48 h, respectively, were obtained. The behavioral test indicates earthworm avoidance from 15.0 mg kg-1 of TCC. During chronic soil exposure, a 44% reduction in earthworm cell viability was observed after 14 days of exposure to 10 mg kg-1 TCC, while an increase in the percentage of amoebocyte cells also ocurred. Chronic exposure to TCC led to reduced CAT and GST activities, decreased GSH levels and increased LPO in exposed organisms. DNA damage was observed after 45 days from a 1 mg kg-1 dose of TCC. Therefore, TCC exhibits toxicological potential to Eisenia andrei earthworms, mainly during long-term exposures. This study provides mechanistic earthworm information towards understanding the environmental and human health implications of TCC exposure and draws attention to correct biosolid management.


Asunto(s)
Oligoquetos , Contaminantes del Suelo , Animales , Carbanilidas , Daño del ADN , Humanos , Estrés Oxidativo , Contaminantes del Suelo/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...