Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cereb Cortex Commun ; 3(3): tgac027, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072710

RESUMEN

In the past decade, several studies have shown that Neurofeedback (NFB) by functional magnetic resonance imaging can alter the functional coupling of targeted and non-targeted areas. However, the causal mechanisms underlying these changes remain uncertain. Here, we applied a whole-brain dynamical model to estimate Effective Connectivity (EC) profiles of resting-state data acquired before and immediately after a single-session NFB training for 17 participants who underwent motor imagery NFB training and 16 healthy controls who received sham feedback. Within-group and between-group classification analyses revealed that only for the NFB group it was possible to accurately discriminate between the 2 resting-state sessions. NFB training-related signatures were reflected in a support network of direct connections between areas involved in reward processing and implicit learning, together with regions belonging to the somatomotor, control, attention, and default mode networks, identified through a recursive-feature elimination procedure. By applying a data-driven approach to explore NFB-induced changes in spatiotemporal dynamics, we demonstrated that these regions also showed decreased switching between different brain states (i.e. metastability) only following real NFB training. Overall, our findings contribute to the understanding of NFB impact on the whole brain's structure and function by shedding light on the direct connections between brain areas affected by NFB training.

2.
Hum Brain Mapp ; 43(13): 4103-4115, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35583382

RESUMEN

How the brain represents gender identity is largely unknown, but some neural differences have recently been discovered. We used an intrinsic ignition framework to investigate whether there are gender differences in the propagation of neural activity across the whole-brain and within resting-state networks. Studying 29 trans men and 17 trans women with gender incongruence, 22 cis women, and 19 cis men, we computed the capability of a given brain area in space to propagate activity to other areas (mean-ignition), and the variability across time for each brain area (node-metastability). We found that both measurements differentiated all groups across the whole brain. At the network level, we found that compared to the other groups, cis men showed higher mean-ignition of the dorsal attention network and node-metastability of the dorsal and ventral attention, executive control, and temporal parietal networks. We also found higher mean-ignition values in cis men than in cis women within the executive control network, but higher mean-ignition in cis women than cis men and trans men for the default mode. Node-metastability was higher in cis men than cis women in the somatomotor network, while both mean-ignition and node-metastability were higher for cis men than trans men in the limbic network. Finally, we computed correlations between these measurements and a body image satisfaction score. Trans men's dissatisfaction as well as cis men's and cis women's satisfaction toward their own body image were distinctively associated with specific networks in each group. Overall, the study of the whole-brain network dynamical complexity discriminates gender identity groups, functional dynamic approaches could help disentangle the complex nature of the gender dimension in the brain.


Asunto(s)
Personas Transgénero , Encéfalo/diagnóstico por imagen , Femenino , Identidad de Género , Humanos , Masculino
3.
Brain Struct Funct ; 227(6): 2087-2102, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35524072

RESUMEN

In the past decades, there has been a growing scientific interest in characterizing neural correlates of meditation training. Nonetheless, the mechanisms underlying meditation remain elusive. In the present work, we investigated meditation-related changes in functional dynamics and structural connectivity (SC). For this purpose, we scanned experienced meditators and control (naive) subjects using magnetic resonance imaging (MRI) to acquire structural and functional data during two conditions, resting-state and meditation (focused attention on breathing). In this way, we aimed to characterize and distinguish both short-term and long-term modifications in the brain's structure and function. First, to analyze the fMRI data, we calculated whole-brain effective connectivity (EC) estimates, relying on a dynamical network model to replicate BOLD signals' spatio-temporal structure, akin to functional connectivity (FC) with lagged correlations. We compared the estimated EC, FC, and SC links as features to train classifiers to predict behavioral conditions and group identity. Then, we performed a network-based analysis of anatomical connectivity. We demonstrated through a machine-learning approach that EC features were more informative than FC and SC solely. We showed that the most informative EC links that discriminated between meditators and controls involved several large-scale networks mainly within the left hemisphere. Moreover, we found that differences in the functional domain were reflected to a smaller extent in changes at the anatomical level as well. The network-based analysis of anatomical pathways revealed strengthened connectivity for meditators compared to controls between four areas in the left hemisphere belonging to the somatomotor, dorsal attention, subcortical and visual networks. Overall, the results of our whole-brain model-based approach revealed a mechanism underlying meditation by providing causal relationships at the structure-function level.


Asunto(s)
Meditación , Encéfalo , Mapeo Encefálico/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Meditación/métodos , Red Nerviosa/diagnóstico por imagen
4.
Front Neurosci ; 15: 753820, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34955718

RESUMEN

Brain dynamics have recently been shown to be modulated by rhythmic changes in female sex hormone concentrations across an entire menstrual cycle. However, many questions remain regarding the specific differences in information processing across spacetime between the two main follicular and luteal phases in the menstrual cycle. Using a novel turbulent dynamic framework, we studied whole-brain information processing across spacetime scales (i.e., across long and short distances in the brain) in two open-source, dense-sampled resting-state datasets. A healthy naturally cycling woman in her early twenties was scanned over 30 consecutive days during a naturally occurring menstrual cycle and under a hormonal contraceptive regime. Our results indicated that the luteal phase is characterized by significantly higher information transmission across spatial scales than the follicular phase. Furthermore, we found significant differences in turbulence levels between the two phases in brain regions belonging to the default mode, salience/ventral attention, somatomotor, control, and dorsal attention networks. Finally, we found that changes in estradiol and progesterone concentrations modulate whole-brain turbulent dynamics in long distances. In contrast, we reported no significant differences in information processing measures between the active and placebo phases in the hormonal contraceptive study. Overall, the results demonstrate that the turbulence framework is able to capture differences in whole-brain turbulent dynamics related to ovarian hormones and menstrual cycle stages.

5.
Front Hum Neurosci ; 15: 711279, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512297

RESUMEN

During the last decades, neurofeedback training for emotional self-regulation has received significant attention from scientific and clinical communities. Most studies have investigated emotions using functional magnetic resonance imaging (fMRI), including the real-time application in neurofeedback training. However, the electroencephalogram (EEG) is a more suitable tool for therapeutic application. Our study aims at establishing a method to classify discrete complex emotions (e.g., tenderness and anguish) elicited through a near-immersive scenario that can be later used for EEG-neurofeedback. EEG-based affective computing studies have mainly focused on emotion classification based on dimensions, commonly using passive elicitation through single-modality stimuli. Here, we integrated both passive and active elicitation methods. We recorded electrophysiological data during emotion-evoking trials, combining emotional self-induction with a multimodal virtual environment. We extracted correlational and time-frequency features, including frontal-alpha asymmetry (FAA), using Complex Morlet Wavelet convolution. Thinking about future real-time applications, we performed within-subject classification using 1-s windows as samples and we applied trial-specific cross-validation. We opted for a traditional machine-learning classifier with low computational complexity and sufficient validation in online settings, the Support Vector Machine. Results of individual-based cross-validation using the whole feature sets showed considerable between-subject variability. The individual accuracies ranged from 59.2 to 92.9% using time-frequency/FAA and 62.4 to 92.4% using correlational features. We found that features of the temporal, occipital, and left-frontal channels were the most discriminative between the two emotions. Our results show that the suggested pipeline is suitable for individual-based classification of discrete emotions, paving the way for future personalized EEG-neurofeedback training.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA