Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38740618

RESUMEN

Among the lifestyle interventions, the physical activity (PA) has emerged as an adjuvant non-pharmacological treatment improving mental and physical health in patients with schizophrenia (SZPs) and increasing the hippocampus (HCP) volume. Previously investigated PA programs have been face-to-face, and not necessary adapted to patients' physiological fitness. We propose an innovative 16-week adapted PA program delivered by real-time videoconferencing (e-APA), allowing SZPs to interact with a coach and to manage their physical condition. The primary goal was to demonstrate a greater increase of total HCP volumes in SZPs receiving e-APA compared to that observed in a controlled group. The secondary objectives were to demonstrate the greater effects of e-APA compared to a controlled group on HCP subfields, cardiorespiratory fitness, clinical symptoms, cognitive functions, and lipidic profile. Thirty-five SZPs were randomized to either e-APA or a controlled group receiving a health education program under the same conditions (e-HE). Variables were assessed at pre- and post-intervention time-points. The dropout rate was 11.4%. Compared to the e-HE group, the e-APA group did not have any effect on the HCP total volumes but increased the left subiculum volume. Also, the e-APA group significantly increased cardiorespiratory fitness (VO2max), improved lipidic profile and negative symptoms but not cognitive functions. This study demonstrated the high feasibility and multiple benefits of a remote e-APA program for SZPs. e-APA may increase brain plasticity and improve health outcomes in SZPs, supporting that PA should be an add-on therapeutic intervention. ClinicalTrial.gov on 25 august 2017 (NCT03261817).

2.
bioRxiv ; 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38076964

RESUMEN

Inquiries into properties of brain structure and function have progressed due to developments in magnetic resonance imaging (MRI). To sustain progress in investigating and quantifying neuroanatomical details in vivo, the reliability and validity of brain measurements are paramount. Quality control (QC) is a set of procedures for mitigating errors and ensuring the validity and reliability of brain measurements. Despite its importance, there is little guidance on best QC practices and reporting procedures. The study of hippocampal subfields in vivo is a critical case for QC because of their small size, inter-dependent boundary definitions, and common artifacts in the MRI data used for subfield measurements. We addressed this gap by surveying the broader scientific community studying hippocampal subfields on their views and approaches to QC. We received responses from 37 investigators spanning 10 countries, covering different career stages, and studying both healthy and pathological development and aging. In this sample, 81% of researchers considered QC to be very important or important, and 19% viewed it as fairly important. Despite this, only 46% of researchers reported on their QC processes in prior publications. In many instances, lack of reporting appeared due to ambiguous guidance on relevant details and guidance for reporting, rather than absence of QC. Here, we provide recommendations for correcting errors to maximize reliability and minimize bias. We also summarize threats to segmentation accuracy, review common QC methods, and make recommendations for best practices and reporting in publications. Implementing the recommended QC practices will collectively improve inferences to the larger population, as well as have implications for clinical practice and public health.

3.
Alzheimers Res Ther ; 13(1): 100, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33990226

RESUMEN

BACKGROUND: Little is known about the heterogeneous etiology of suspected non-Alzheimer's pathophysiology (SNAP), a group of subjects with neurodegeneration in the absence of ß-amyloid. Using antemortem MRI and pathological data, we investigated the etiology of SNAP and the association of neurodegenerative pathologies with structural medial temporal lobe (MTL) measures in ß-amyloid-negative subjects. METHODS: Subjects with antemortem MRI and autopsy data were selected from ADNI (n=63) and the University of Pennsylvania (n=156). Pathological diagnoses and semi-quantitative scores of MTL tau, neuritic plaques, α-synuclein, and TDP-43 pathology and MTL structural MRI measures from antemortem T1-weighted MRI scans were obtained. ß-amyloid status (A+/A-) was determined by CERAD score and neurodegeneration status (N+/N-) by hippocampal volume. RESULTS: SNAP reflects a heterogeneous group of pathological diagnoses. In ADNI, SNAP (A-N+) had significantly more neuropathological diagnoses than A+N+. In the A- group, tau pathology was associated with hippocampal, entorhinal cortex, and Brodmann area 35 volume/thickness and TDP-43 pathology with hippocampal volume. CONCLUSION: SNAP had a heterogeneous profile with more mixed pathologies than A+N+. Moreover, a role for TDP-43 and tau pathology in driving MTL neurodegeneration in the absence of ß-amyloid was supported.


Asunto(s)
Enfermedad de Alzheimer , Proteínas tau , Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides/metabolismo , Corteza Entorrinal/metabolismo , Hipocampo/diagnóstico por imagen , Hipocampo/metabolismo , Humanos , Imagen por Resonancia Magnética , Lóbulo Temporal/metabolismo , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...