Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 580(7803): 409-412, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32296172

RESUMEN

Mycobacterium tuberculosis (Mtb) is an obligate human pathogen and the causative agent of tuberculosis1-3. Although Mtb can synthesize vitamin B12 (cobalamin) de novo, uptake of cobalamin has been linked to pathogenesis of tuberculosis2. Mtb does not encode any characterized cobalamin transporter4-6; however, the gene rv1819c was found to be essential for uptake of cobalamin1. This result is difficult to reconcile with the original annotation of Rv1819c as a protein implicated in the transport of antimicrobial peptides such as bleomycin7. In addition, uptake of cobalamin seems inconsistent with the amino acid sequence, which suggests that Rv1819c has a bacterial ATP-binding cassette (ABC)-exporter fold1. Here, we present structures of Rv1819c, which reveal that the protein indeed contains the ABC-exporter fold, as well as a large water-filled cavity of about 7,700 Å3, which enables the protein to transport the unrelated hydrophilic compounds bleomycin and cobalamin. On the basis of these structures, we propose that Rv1819c is a multi-solute transporter for hydrophilic molecules, analogous to the multidrug exporters of the ABC transporter family, which pump out structurally diverse hydrophobic compounds from cells8-11.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/metabolismo , Bleomicina/metabolismo , Mycobacterium tuberculosis/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Transporte Biológico , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína
2.
Nat Commun ; 9(1): 3038, 2018 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-30072686

RESUMEN

Uptake of vitamin B12 is essential for many prokaryotes, but in most cases the membrane proteins involved are yet to be identified. We present the biochemical characterization and high-resolution crystal structure of BtuM, a predicted bacterial vitamin B12 uptake system. BtuM binds vitamin B12 in its base-off conformation, with a cysteine residue as axial ligand of the corrin cobalt ion. Spectroscopic analysis indicates that the unusual thiolate coordination allows for decyanation of vitamin B12. Chemical modification of the substrate is a property other characterized vitamin B12-transport proteins do not exhibit.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cisteína/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Vitamina B 12/metabolismo , Proteínas Bacterianas/química , Biocatálisis , Cristalografía por Rayos X , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Cinética , Proteínas de Transporte de Membrana/química , Modelos Moleculares , Thiobacillus/metabolismo , Vitamina B 12/farmacología
3.
J Mol Biol ; 414(1): 75-85, 2011 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-21983341

RESUMEN

The Escherichia coli peptide binding protein OppA is an essential component of the oligopeptide transporter Opp. Based on studies on its orthologue from Salmonella typhimurium, it has been proposed that OppA binds peptides between two and five amino acids long, with no apparent sequence selectivity. Here, we studied peptide binding to E. coli OppA directly and show that the protein has an unexpected preference for basic peptides. OppA was expressed in the periplasm, where it bound to available peptides. The protein was purified in complex with tightly bound peptides. The crystal structure (up to 2.0 Å) of OppA liganded with the peptides indicated that the protein has a preference for peptides containing a lysine. Mass spectrometry analysis of the bound peptides showed that peptides between two and five amino acids long bind to the protein and indeed hinted at a preference for positively charged peptides. The preference of OppA for peptides with basic residues, in particular lysines, was corroborated by binding studies with peptides of defined sequence using isothermal titration calorimetry and intrinsic protein fluorescence titration. The protein bound tripeptides and tetrapeptides containing positively charged residues with high affinity, whereas related peptides without lysines/arginines were bound with low affinity. A structure of OppA in an open conformation in the absence of ligands was also determined to 2.0 Å, revealing that the initial binding site displays a negative surface charge, consistent with the observed preference for positively charged peptides. Taken together, E. coli OppA appears to have a preference for basic peptides.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Lipoproteínas/química , Lipoproteínas/metabolismo , Oligopéptidos/metabolismo , Sitios de Unión , Transporte Biológico , Proteínas Portadoras/genética , Cristalografía por Rayos X , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Immunoblotting , Lipoproteínas/genética , Modelos Moleculares , Unión Proteica , Conformación Proteica , Salmonella typhimurium/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Especificidad por Sustrato
4.
FEBS Lett ; 507(2): 220-4, 2001 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-11684102

RESUMEN

Escherichia coli is one of the most widely used vehicles to overexpress membrane proteins (MPs). Currently, it is not possible to predict if an overexpressed MP will end up in the cytoplasmic membrane or in inclusion bodies. Overexpression of MPs in the cytoplasmic membrane is strongly favoured to overexpression in inclusion bodies, since it is relatively easy to isolate MPs from membranes and usually impossible to isolate them from inclusion bodies. Here we show that green fluorescent protein (GFP), when fused to an overexpressed MP, can be used as an indicator to monitor membrane insertion versus inclusion body formation of overexpressed MPs in E. coli. Furthermore, we show that an overexpressed MP can be recovered from a MP-GFP fusion using a site specific protease. This makes GFP an excellent tool for large-scale MP target selection in structural genomics projects.


Asunto(s)
Proteínas de la Cápside , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Proteínas Luminiscentes/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cápside/genética , Cápside/metabolismo , Membrana Celular/metabolismo , Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/aislamiento & purificación , Proteínas de la Membrana/genética , Proteínas de la Membrana/aislamiento & purificación , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Ratas , Receptores de Péptidos/genética , Receptores de Péptidos/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación
5.
J Biol Chem ; 276(37): 34847-52, 2001 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-11457858

RESUMEN

The membrane insertion of the Sec-independent M13 Procoat protein in bacteria requires the membrane electrochemical potential and the integral membrane protein YidC. We show here that YidC is involved in the translocation but not in the targeting of the Procoat protein, because we found the protein was partitioned into the membrane in the absence of YidC. YidC can function also to promote membrane insertion of Procoat mutants that insert independently of the membrane potential, proving that the effect of YidC depletion is not due to a dissipation of the membrane potential. We also found that YidC is absolutely required for Sec-dependent translocation of a long periplasmic loop of a mutant Procoat in which the periplasmic region has been extended from 20 to 194 residues. Furthermore, when Sec-dependent membrane proteins with large periplasmic domains were overproduced under YidC-limited conditions, we found that the exported proteins pro-OmpA and pre-peptidoglycan-associated lipoprotein accumulated in the cytoplasm. This suggests for Sec-dependent proteins that YidC functions at a late stage in membrane insertion, after the Sec translocase interacts with the translocating membrane protein. These studies are consistent with the understanding that YidC cooperates with the Sec translocase for membrane translocation and that YidC is required for clearing the protein-conducting channel.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Proteínas Bacterianas/fisiología , Proteínas de la Cápside , Cápside/metabolismo , Proteínas Portadoras/fisiología , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana , Precursores de Proteínas/metabolismo , Transporte Biológico , Potenciales de la Membrana , Canales de Translocación SEC , Proteína SecA
6.
FEBS Lett ; 501(1): 1-5, 2001 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-11457446

RESUMEN

This review focuses on a novel, evolutionarily conserved mediator of membrane protein assembly in bacteria, mitochondria and chloroplasts. This factor is designated YidC in Escherichia coli, and is localized in the inner membrane. YidC is homologous to Oxa1p in the mitochondrial inner membrane and Alb3 in the chloroplast thylakoid membrane, but does not seem to have a homologue in the endoplasmic reticulum membrane. It has been suggested that YidC operates both as a separate unit and in connection with the SecYEG-translocon depending on the substrate membrane protein that is integrated into the membrane. Mitochondria do not possess a SecYEG-like complex and Oxa1p is thought to form, or to contribute to the formation of, a novel translocon in the mitochondrial inner membrane. Alb3 in the chloroplast thylakoid membrane is, just like YidC and Oxa1p, involved in membrane protein assembly, but only few details are known.


Asunto(s)
Proteínas de Arabidopsis , Proteínas Bacterianas/metabolismo , Secuencia Conservada , Proteínas de Escherichia coli , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana , Proteínas Nucleares/metabolismo , Proteínas de Plantas/metabolismo , Cloroplastos/metabolismo , Complejo IV de Transporte de Electrones , Humanos , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/química , Mitocondrias/metabolismo , Proteínas Mitocondriales , Transporte de Proteínas , Canales de Translocación SEC
7.
FEBS Lett ; 498(1): 52-6, 2001 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-11389897

RESUMEN

The SecE protein is an essential component of the SecAYE-translocase, which mediates protein translocation across the cytoplasmic membrane in bacteria. In the thylakoid membranes of chloroplasts, a protein homologous to SecE, chloroplastic (cp) SecE, has been identified. However, the functional role of cpSecE has not been established experimentally. In this report we show that cpSecE in cells depleted for bacterial SecE (i) supports growth, (ii) stabilizes, just like bacterial SecE, the Sec-translocase core component SecY, and (iii) supports Sec-dependent protein translocation. This indicates that cpSecE can functionally replace bacterial SecE in vivo, and strongly suggests that the thylakoid membrane contains a SecAYE-like translocase with functional and structural similarities to the bacterial complex. This study further underscores the evolutionary link between chloroplasts and bacteria.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cloroplastos/metabolismo , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Prueba de Complementación Genética , Proteínas de Transporte de Membrana , Adenosina Trifosfatasas , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas Bacterianas/análisis , Proteínas Bacterianas/genética , Proteínas Portadoras , Cloroplastos/genética , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Datos de Secuencia Molecular , Transporte de Proteínas , Canales de Translocación SEC , Proteína SecA , Homología de Secuencia de Aminoácido
8.
EMBO Rep ; 2(6): 524-9, 2001 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-11415986

RESUMEN

Recent studies identified YidC as a novel membrane factor that may play a key role in membrane insertion of inner membrane proteins (IMPs), both in conjunction with the Sec-translocase and as a separate entity. Here, we show that the type II IMP FtsQ requires both the translocase and, to a lesser extent, YidC in vivo. Using photo-crosslinking we demonstrate that the transmembrane (TM) domain of the nascent IMP FtsQ inserts into the membrane close to SecY and lipids, and moves to a combined YidC/lipid environment upon elongation. These data are consistent with a crucial role for YidC in the lateral transfer of TM domains from the Sec translocase into the lipid bilayer.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Membrana Celular/enzimología , Proteínas de Escherichia coli , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana , Membrana Celular/metabolismo , Electroforesis en Gel de Poliacrilamida , Escherichia coli/enzimología , Escherichia coli/metabolismo , Metabolismo de los Lípidos , Modelos Biológicos , Plásmidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Canales de Translocación SEC , Proteína SecA
9.
Mol Microbiol ; 40(2): 314-22, 2001 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11309115

RESUMEN

For a long time, it was generally assumed that the biogenesis of inner membrane proteins in Escherichia coli occurs spontaneously, and that only the translocation of large periplasmic domains requires the aid of a protein machinery, the Sec translocon. However, evidence obtained in recent years indicates that most, if not all, inner membrane proteins require the assistance of protein factors to reach their native conformation in the membrane. Here, we review and discuss recent advances in our understanding of the biogenesis of inner membrane proteins in E. coli.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Bacterianas/química , Membrana Celular/metabolismo , Escherichia coli/genética , Proteínas de la Membrana/química , Pliegue de Proteína , Transporte de Proteínas
10.
EMBO J ; 19(4): 542-9, 2000 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-10675323

RESUMEN

In Escherichia coli, both secretory and inner membrane proteins initially are targeted to the core SecYEG inner membrane translocase. Previous work has also identified the peripherally associated SecA protein as well as the SecD, SecF and YajC inner membrane proteins as components of the translocase. Here, we use a cross-linking approach to show that hydrophilic portions of a co-translationally targeted inner membrane protein (FtsQ) are close to SecA and SecY, suggesting that insertion takes place at the SecA/Y interface. The hydrophobic FtsQ signal anchor sequence contacts both lipids and a novel 60 kDa translocase-associated component that we identify as YidC. YidC is homologous to Saccharomyces cerevisiae Oxa1p, which has been shown to function in a novel export pathway at the mitochondrial inner membrane. We propose that YidC is involved in the insertion of hydrophobic sequences into the lipid bilayer after initial recognition by the SecAYEG translocase.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Adenosina Trifosfatasas/genética , Proteínas Bacterianas/genética , Sitios de Unión , Proteínas Portadoras/genética , Complejo IV de Transporte de Electrones , Escherichia coli/genética , Proteínas Fúngicas/metabolismo , Metabolismo de los Lípidos , Sustancias Macromoleculares , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales , Modelos Biológicos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas Nucleares/genética , Canales de Translocación SEC , Saccharomyces cerevisiae/metabolismo , Proteína SecA
11.
J Biol Chem ; 274(29): 20068-70, 1999 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-10400614

RESUMEN

ProW is an Escherichia coli inner membrane protein that consists of a 100-residue-long periplasmic N-terminal tail (N-tail) followed by seven closely spaced transmembrane segments. N-tail translocation presumably proceeds in a C-to-N-terminal direction and represents a poorly understood aspect of membrane protein biogenesis. Here, using an in vivo depletion approach, we show that N-tail translocation in a ProW derivative comprising the N-tail and the first transmembrane segment fused to the globular P2 domain of leader peptidase depends both on the bacterial signal recognition particle (SRP) and the Sec-translocase. Surprisingly, however, a deletion construct with only one transmembrane segment downstream of the N-tail can assemble properly even under severe depletion of SecE, a central component of the Sec-translocase, but not under SRP-depletion conditions. To our knowledge, this is the first demonstration that the SRP-targeting pathway does not necessarily deliver SRP-dependent inner membrane proteins to the Sec-translocase. The data further suggest that N-tail translocation can proceed in the absence of a functional Sec-translocase.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas , Proteínas de Escherichia coli , Escherichia coli/enzimología , Proteínas de la Membrana/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Transporte Biológico , Proteínas de la Membrana/química
12.
EMBO J ; 18(11): 2982-90, 1999 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-10357811

RESUMEN

Recently, a new protein translocation pathway, the twin-arginine translocation (TAT) pathway, has been identified in both bacteria and chloroplasts. To study the possible competition between the TAT- and the well-characterized Sec translocon-dependent pathways in Escherichia coli, we have fused the TorA TAT-targeting signal peptide to the Sec-dependent inner membrane protein leader peptidase (Lep). We find that the soluble, periplasmic P2 domain from Lep is re-routed by the TorA signal peptide into the TAT pathway. In contrast, the full-length TorA-Lep fusion protein is not re-routed into the TAT pathway, suggesting that Sec-targeting signals in Lep can override TAT-targeting information in the TorA signal peptide. We also show that the TorA signal peptide can be converted into a Sec-targeting signal peptide by increasing the hydrophobicity of its h-region. Thus, beyond the twin-arginine motif, the overall hydrophobicity of the signal peptide plays an important role in TAT versus Sec targeting. This is consistent with statistical data showing that TAT-targeting signal peptides in general have less hydrophobic h-regions than Sec-targeting signal peptides.


Asunto(s)
Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Señales de Clasificación de Proteína/metabolismo , Secuencia de Aminoácidos , Arginina/genética , Arginina/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Transporte Biológico , Endopeptidasa K , Escherichia coli/genética , Glicina/genética , Glicina/metabolismo , Cinética , Leucina/genética , Leucina/metabolismo , Datos de Secuencia Molecular , Mutación , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Periplasma/química , Periplasma/metabolismo , Conformación Proteica , Procesamiento Proteico-Postraduccional , Señales de Clasificación de Proteína/química , Señales de Clasificación de Proteína/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Solubilidad , Esferoplastos/metabolismo
13.
Proc Natl Acad Sci U S A ; 95(25): 14646-51, 1998 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-9843943

RESUMEN

Assembly of several inner membrane proteins-leader peptidase (Lep), a Lep derivative (Lep-inv) that inserts with an inverted topology compared with the wild-type protein, the phage M13 procoat protein, and a procoat derivative (H1-procoat) with the hydrophobic core of the signal peptide replaced by a stretch from the first transmembrane segment in Lep-has been studied in vitro and in Escherichia coli strains that are conditional for the expression of either the 54 homologue (Ffh) or 4.5S RNA, which are the two components of the E. coli signal recognition particle (SRP), or SecE, an essential core component of the E. coli preprotein translocase. Membrane insertion has also been tested in a SecB null strain. Lep, Lep-inv, and H1-procoat require SRP for correct assembly into the inner membrane; in contrast, we find that wild-type procoat does not. Lep and, surprisingly, Lep-inv and H1-procoat fail to insert properly when SecE is depleted, whereas insertion of wild-type procoat is unaffected under these conditions. None of the proteins depend on SecB for assembly. These observations indicate that inner membrane proteins can assemble either by a mechanism in which SRP delivers the protein at the preprotein translocase or by what appears to be a direct integration into the lipid bilayer. The observed change in assembly mechanism when the hydrophobicity of the procoat signal peptide is increased demonstrates that the assembly of an inner membrane protein can be rerouted between different pathways.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Procesamiento Proteico-Postraduccional , Canales de Translocación SEC , Transducción de Señal
14.
J Biol Chem ; 273(46): 30415-8, 1998 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-9804807

RESUMEN

We have characterized the membrane topology of a 60-kDa inner membrane protein from Escherichia coli that is homologous to the recently identified Oxa1p protein in Saccharomyces cerevisiae mitochondria implicated in the assembly of mitochondrial inner membrane proteins. Hydrophobicity and alkaline phosphatase fusion analyses suggest a membrane topology with six transmembrane segments, including an N-terminal signal-anchor sequence not present in mitochondrial Oxa1p. In contrast to partial N-terminal fusion protein constructs, the full-length protein folds into a protease-resistant conformation, suggesting that important folding determinants are present in the C-terminal part of the molecule.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Escherichia coli/enzimología , Proteínas Nucleares/química , Fosfatasa Alcalina/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Quinasas Ciclina-Dependientes/metabolismo , Endopeptidasa K/metabolismo , Proteínas de Escherichia coli , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales , Datos de Secuencia Molecular , Peso Molecular , Proteínas Nucleares/metabolismo , Estructura Secundaria de Proteína , Saccharomyces cerevisiae , Propiedades de Superficie
15.
EMBO J ; 17(9): 2504-12, 1998 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-9564033

RESUMEN

Two distinct protein targeting pathways can direct proteins to the Escherichia coli inner membrane. The Sec pathway involves the cytosolic chaperone SecB that binds to the mature region of pre-proteins. SecB targets the pre-protein to SecA that mediates pre-protein translocation through the SecYEG translocon. The SRP pathway is probably used primarily for the targeting and assembly of inner membrane proteins. It involves the signal recognition particle (SRP) that interacts with the hydrophobic targeting signal of nascent proteins. By using a protein cross-linking approach, we demonstrate here that the SRP pathway delivers nascent inner membrane proteins at the membrane. The SRP receptor FtsY, GTP and inner membranes are required for release of the nascent proteins from the SRP. Upon release of the SRP at the membrane, the targeted nascent proteins insert into a translocon that contains at least SecA, SecY and SecG. Hence, as appears to be the case for several other translocation systems, multiple targeting mechanisms deliver a variety of precursor proteins to a common membrane translocation complex of the E.coli inner membrane.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Glicoproteínas de Membrana , Proteínas de Transporte de Membrana , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Péptidos/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Factores de Transcripción/metabolismo , Adenosina Trifosfatasas/metabolismo , Membrana Celular/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/metabolismo , Canales de Translocación SEC , Proteína SecA
16.
Mol Microbiol ; 25(1): 53-64, 1997 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-11902726

RESUMEN

The Escherichia coli signal recognition particle (SRP) and trigger factor are cytoplasmic factors that interact with short nascent polypeptides of presecretory and membrane proteins produced in a heterologous in vitro translation system. In this study, we use an E. coli in vitro translation system in combination with bifunctional cross-linking reagents to investigate these interactions in more detail in a homologous environment. Using this approach, the direct interaction of SRP with nascent polypeptides that expose particularly hydrophobic targeting signals is demonstrated, suggesting that inner membrane proteins are the primary physiological substrate of the E. coli SRP. Evidence is presented that the overproduction of proteins that expose hydrophobic polypeptide stretches, titrates SRP. In addition, trigger factor is efficiently cross-linked to nascent polypeptides of different length and nature, some as short as 57 amino acid residues, indicating that it is positioned near the nascent chain exit site on the E. coli ribosome.


Asunto(s)
Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Proteínas Bacterianas/metabolismo , Reactivos de Enlaces Cruzados/metabolismo , Proteínas de Escherichia coli/metabolismo , Fotoquímica , Porinas/metabolismo , Ribosomas/metabolismo
17.
FEBS Lett ; 408(1): 1-4, 1997 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-9180256

RESUMEN

Research on the targeting of proteins to the cytoplasmic membrane of E. coli has mainly focused on the so-called 'general secretory pathway' (GSP) which involves the Sec-proteins. Recently, evidence has been obtained for an alternative targeting pathway in E. coli which involves the signal recognition particle (SRP). The constituents of this SRP pathway in E. coli are homologous to those of the well-characterized eukaryotic SRP pathway, which is the main targeting pathway for both proteins translocated across and inserted into the endoplasmic reticulum membrane. However, until recently, no clear function could be assigned to the SRP in E. coli. New studies point to an important role of the E. coli SRP in the assembly of inner membrane proteins.


Asunto(s)
Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Escherichia coli/química , Células Eucariotas/metabolismo
18.
FEBS Lett ; 399(3): 307-9, 1996 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-8985168

RESUMEN

Targeting of the cytoplasmic membrane protein leader peptidase (Lep) and a Lep mutant (Lep-inv) that inserts with an inverted topology compared to the wild-type protein was studied in Escherichia coli strains that are conditional for the expression of either Ffh or 4.5S RNA, the two components of the E. coli SRP. Depletion of either component strongly affected the insertion of both Lep and Lep-inv into the cytoplasmic membrane. This indicates that SRP is required for the assembly of cytoplasmic membrane proteins in E. coli.


Asunto(s)
Escherichia coli/enzimología , Proteínas de la Membrana/metabolismo , Serina Endopeptidasas/metabolismo , Partícula de Reconocimiento de Señal/metabolismo
19.
Mol Microbiol ; 20(6): 1247-60, 1996 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-8809776

RESUMEN

In Paracoccus denitrificans the aa3-type cytochrome c oxidase and the bb3-type quinol oxidase have previously been characterized in detail, both biochemically and genetically. Here we report on the isolation of a genomic locus that harbours the gene cluster ccoNOOP, and demonstrate that it encodes an alternative cbb3-type cytochrome c oxidase. This oxidase has previously been shown to be specifically induced at low oxygen tensions, suggesting that its expression is controlled by an oxygen-sensing mechanism. This view is corroborated by the observation that the ccoNOOP gene cluster is preceded by a gene that encodes an FNR homologue and that its promoter region contains an FNR-binding motif. Biochemical and physiological analyses of a set of oxidase mutants revealed that, at least under the conditions tested, cytochromes aa3, bb3 and cbb3 make up the complete set of terminal oxidases in P. denitrificans. Proton-translocation measurements of these oxidase mutants indicate that all three oxidase types have the capacity to pump protons. Previously, however, we have reported decreased H+/e- coupling efficiencies of the cbb3-type oxidase under certain conditions. Sequence alignment suggests that many residues that have been proposed to constitute the chemical and pumped proton channels in cytochrome aa3 (and probably also in cytochrome bb3) are not conserved in cytochrome cbb3. It is concluded that the design of the proton pump in cytochrome cbb3 differs significantly from that in the other oxidase types.


Asunto(s)
Proteínas Bacterianas/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Oxidorreductasas/metabolismo , Paracoccus denitrificans/enzimología , Bombas de Protones , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , ADN Bacteriano , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/genética , Datos de Secuencia Molecular , Oxidorreductasas/química , Oxidorreductasas/genética , Oxidorreductasas/aislamiento & purificación , Consumo de Oxígeno , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad
20.
J Bioenerg Biomembr ; 27(5): 499-512, 1995 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-8718455

RESUMEN

Paracoccus denitrificans is a facultative anaerobic bacterium that has the capacity to adjust its metabolic infrastructure, quantitatively and/or qualitatively, to the prevailing growth condition. In this bacterium the relative activity of distinct catabolic pathways is subject to a hierarchical control. In the presence of oxygen the aerobic respiration, the most efficient way of electron transfer-linked phosphorylation, has priority. At high oxygen tensions P. denitrificans synthesizes an oxidase with a relatively low affinity for oxygen, whereas under oxygen limitation a high-affinity oxidase appears specifically induced. During anaerobiosis, the pathways with lower free energy-transducing efficiency are induced. In the presence of nitrate, the expression of a number of dehydrogenases ensures the continuation of oxidative phosphorylation via denitrification. After identification of the structural components that are involved in both the aerobic and the anaerobic respiratory networks of P. denitrificans, the intriguing next challenge is to get insight in its regulation. Two transcription regulators have recently been demonstrated to be involved in the expression of a number of aerobic and/or anaerobic respiratory complexes in P. denitrificans. Understanding of the regulation machinery is beginning to emerge and promises much excitement in discovery.


Asunto(s)
Genes Bacterianos , Fosforilación Oxidativa , Paracoccus denitrificans/metabolismo , Aerobiosis , Anaerobiosis , Regulación Bacteriana de la Expresión Génica , Homeostasis , Modelos Biológicos , Mutagénesis , Paracoccus denitrificans/genética , Paracoccus denitrificans/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...