Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 7756, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565965

RESUMEN

SAG21/LEA5 is an unusual late embryogenesis abundant protein in Arabidopsis thaliana, that is primarily mitochondrially located and may be important in regulating translation in both chloroplasts and mitochondria. SAG21 expression is regulated by a plethora of abiotic and biotic stresses and plant growth regulators indicating a complex regulatory network. To identify key transcription factors regulating SAG21 expression, yeast-1-hybrid screens were used to identify transcription factors that bind the 1685 bp upstream of the SAG21 translational start site. Thirty-three transcription factors from nine different families bound to the SAG21 promoter, including members of the ERF, WRKY and NAC families. Key binding sites for both NAC and WRKY transcription factors were tested through site directed mutagenesis indicating the presence of cryptic binding sites for both these transcription factor families. Co-expression in protoplasts confirmed the activation of SAG21 by WRKY63/ABO3, and SAG21 upregulation elicited by oligogalacturonide elicitors was partially dependent on WRKY63, indicating its role in SAG21 pathogen responses. SAG21 upregulation by ethylene was abolished in the erf1 mutant, while wound-induced SAG21 expression was abolished in anac71 mutants, indicating SAG21 expression can be regulated by several distinct transcription factors depending on the stress condition.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Arabidopsis/metabolismo , Oxidación-Reducción , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico
2.
Plant Cell ; 35(9): 3544-3565, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37306489

RESUMEN

Self-incompatibility (SI) is a widespread genetically determined system in flowering plants that prevents self-fertilization to promote gene flow and limit inbreeding. S-RNase-based SI is characterized by the arrest of pollen tube growth through the pistil. Arrested pollen tubes show disrupted polarized growth and swollen tips, but the underlying molecular mechanism is largely unknown. Here, we demonstrate that the swelling at the tips of incompatible pollen tubes in pear (Pyrus bretschneideri [Pbr]) is mediated by the SI-induced acetylation of the soluble inorganic pyrophosphatase (PPA) PbrPPA5. Acetylation at Lys-42 of PbrPPA5 by the acetyltransferase GCN5-related N-acetyltransferase 1 (GNAT1) drives accumulation of PbrPPA5 in the nucleus, where it binds to the transcription factor PbrbZIP77, forming a transcriptional repression complex that inhibits the expression of the pectin methylesterase (PME) gene PbrPME44. The function of PbrPPA5 as a transcriptional repressor does not require its PPA activity. Downregulating PbrPME44 resulted in increased levels of methyl-esterified pectins in growing pollen tubes, leading to swelling at their tips. These observations suggest a mechanism for PbrPPA5-driven swelling at the tips of pollen tubes during the SI response. The targets of PbrPPA5 include genes encoding cell wall-modifying enzymes, which are essential for building a continuous sustainable mechanical structure for pollen tube growth.


Asunto(s)
Tubo Polínico , Pyrus , Ribonucleasas/metabolismo , Pirofosfatasa Inorgánica/genética , Pirofosfatasa Inorgánica/metabolismo , Acetilación , Pyrus/metabolismo
3.
Int J Mol Sci ; 21(20)2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33096855

RESUMEN

Polyamines (PAs) are essential metabolites in plants performing multiple functions during growth and development. Copper-containing amine oxidases (CuAOs) catalyse the catabolism of PAs and in Arabidopsis thaliana are encoded by a gene family. Two mutants of one gene family member, AtCuAOδ, showed delayed seed germination, leaf emergence, and flowering time. The height of the primary inflorescence shoot was reduced, and developmental leaf senescence was delayed. Siliques were significantly longer in mutant lines and contained more seeds. The phenotype of AtCuAOδ over-expressors was less affected. Before flowering, there was a significant increase in putrescine in AtCuAOδ mutant leaves compared to wild type (WT), while after flowering both spermidine and spermine concentrations were significantly higher than in WT leaves. The expression of GA (gibberellic acid) biosynthetic genes was repressed and the content of GA1, GA7, GA8, GA9, and GA20 was reduced in the mutants. The inhibitor of copper-containing amine oxidases, aminoguanidine hydrochloride, mimicked the effect of AtCuAOδ mutation on WT seed germination. Delayed germination, reduced shoot height, and delayed flowering in the mutants were rescued by GA3 treatment. These data strongly suggest AtCuAOδ is an important gene regulating PA homeostasis, and that a perturbation of PAs affects plant development through a reduction in GA biosynthesis.


Asunto(s)
Amina Oxidasa (conteniendo Cobre)/genética , Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Giberelinas/metabolismo , Poliaminas/metabolismo , Amina Oxidasa (conteniendo Cobre)/antagonistas & inhibidores , Amina Oxidasa (conteniendo Cobre)/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Germinación , Giberelinas/farmacología , Ácidos Indolacéticos/metabolismo , Mutación , Hojas de la Planta/fisiología , Plantas Modificadas Genéticamente , Semillas/genética , Semillas/crecimiento & desarrollo
4.
Plant Cell ; 30(5): 1023-1039, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29716992

RESUMEN

S-RNase is the female determinant of self-incompatibility (SI) in pear (Pyrus bretschneideri). After translocation to the pollen tube, S-RNase degrades rRNA and induces pollen tube death in an S-haplotype-specific manner. In this study, we found that the actin cytoskeleton is a target of P. bretschneideri S-RNase (PbrS-RNase) and uncovered a mechanism that involves phosphatidic acid (PA) and protects the pollen tube from PbrS-RNase cytotoxicity. PbrS-RNase interacts directly with PbrActin1 in an S-haplotype-independent manner, causing the actin cytoskeleton to depolymerize and promoting programmed cell death in the self-incompatible pollen tube. Pro-156 of PbrS-RNase is essential for the PbrS-RNase-PbrActin1 interaction, and the actin cytoskeleton-depolymerizing function of PbrS-RNase does not require its RNase activity. PbrS-RNase cytotoxicity enhances the expression of phospholipase D (PbrPLDδ1), resulting in increased PA levels in the incompatible pollen tube. PbrPLDδ1-derived PA initially prevents depolymerization of the actin cytoskeleton elicited by PbrS-RNase and delays the SI signaling that leads to pollen tube death. This work provides insights into the orchestration of the S-RNase-based SI response, in which increased PA levels initially play a protective role in incompatible pollen, until sustained PbrS-RNase activity reaches the point of no return and pollen tube growth ceases.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Citoesqueleto/metabolismo , Ácidos Fosfatidicos/metabolismo , Polinización/fisiología , Ribonucleasas/metabolismo , Transducción de Señal/fisiología
5.
Plant Physiol ; 173(3): 1606-1616, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28126844

RESUMEN

Protein phosphorylation regulates numerous cellular processes. Identifying the substrates and protein kinases involved is vital to understand how these important posttranslational modifications modulate biological function in eukaryotic cells. Pyrophosphatases catalyze the hydrolysis of inorganic phosphate (PPi) to inorganic phosphate Pi, driving biosynthetic reactions; they are essential for low cytosolic inorganic phosphate. It was suggested recently that posttranslational regulation of Family I soluble inorganic pyrophosphatases (sPPases) may affect their activity. We previously demonstrated that two pollen-expressed sPPases, Pr-p26.1a and Pr-p26.1b, from the flowering plant Papaver rhoeas were inhibited by phosphorylation. Despite the potential significance, there is a paucity of data on sPPase phosphorylation and regulation. Here, we used liquid chromatographic tandem mass spectrometry to map phosphorylation sites to the otherwise divergent amino-terminal extensions on these pollen sPPases. Despite the absence of reports in the literature on mapping phosphorylation sites on sPPases, a database survey of various proteomes identified a number of examples, suggesting that phosphorylation may be a more widely used mechanism to regulate these enzymes. Phosphomimetic mutants of Pr-p26.1a/b significantly and differentially reduced PPase activities by up to 2.5-fold at pH 6.8 and 52% in the presence of Ca2+ and hydrogen peroxide over unmodified proteins. This indicates that phosphoregulation of key sites can inhibit the catalytic responsiveness of these proteins in concert with key intracellular events. As sPPases are essential for many metabolic pathways in eukaryotic cells, our findings identify the phosphorylation of sPPases as a potential master regulatory mechanism that could be used to attenuate metabolism.


Asunto(s)
Pirofosfatasa Inorgánica/metabolismo , Papaver/enzimología , Proteínas de Plantas/metabolismo , Polen/enzimología , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión/genética , Calcio/metabolismo , Calcio/farmacología , Cromatografía Liquida , Electroforesis en Gel de Poliacrilamida , Peróxido de Hidrógeno/farmacología , Concentración de Iones de Hidrógeno , Pirofosfatasa Inorgánica/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Mutación , Oxidantes/farmacología , Papaver/genética , Fosforilación , Filogenia , Proteínas de Plantas/genética , Polen/genética , Proteínas Quinasas/clasificación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Solubilidad , Especificidad por Sustrato , Espectrometría de Masas en Tándem
7.
Plant Methods ; 8(1): 43, 2012 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-23062011

RESUMEN

BACKGROUND: A large number of different plant lines are produced and maintained in a typical plant research laboratory, both as seed stocks and in active growth. These collections need careful and consistent management to track and maintain them properly, and this is a particularly pressing issue in laboratories undertaking research involving genetic manipulation due to regulatory requirements. Researchers and PIs need to access these data and collections, and therefore an easy-to-use plant-oriented laboratory information management system that implements, maintains and displays the information in a simple and visual format would be of great help in both the daily work in the lab and in ensuring regulatory compliance. RESULTS: Here, we introduce 'Phytotracker', a laboratory management system designed specifically to organise and track plasmids, seeds and growing plants that can be used in mixed platform environments. Phytotracker is designed with simplicity of user operation and ease of installation and management as the major factor, whilst providing tracking tools that cover the full range of activities in molecular genetics labs. It utilises the cross-platform Filemaker relational database, which allows it to be run as a stand-alone or as a server-based networked solution available across all workstations in a lab that can be internet accessible if desired. It can also be readily modified or customised further. Phytotracker provides cataloguing and search functions for plasmids, seed batches, seed stocks and plants growing in pots or trays, and allows tracking of each plant from seed sowing, through harvest to the new seed batch and can print appropriate labels at each stage. The system enters seed information as it is transferred from the previous harvest data, and allows both selfing and hybridization (crossing) to be defined and tracked. Transgenic lines can be linked to their plasmid DNA source. This ease of use and flexibility helps users to reduce their time needed to organise their plants, seeds and plasmids and to maintain laboratory continuity involving multiple workers. CONCLUSION: We have developed and used Phytotracker for over five years and have found it has been an intuitive, powerful and flexible research tool in organising our plasmid, seed and plant collections requiring minimal maintenance and training for users. It has been developed in an Arabidopsis molecular genetics environment, but can be readily adapted for almost any plant laboratory research.

8.
Curr Biol ; 22(2): 154-9, 2012 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-22209529

RESUMEN

Many angiosperms use specific interactions between pollen and pistil proteins as "self" recognition and/or rejection mechanisms to prevent self-fertilization. Self-incompatibility (SI) is encoded by a multiallelic S locus, comprising pollen and pistil S-determinants. In Papaver rhoeas, cognate pistil and pollen S-determinants, PrpS, a pollen-expressed transmembrane protein, and PrsS, a pistil-expressed secreted protein, interact to trigger a Ca(2+)-dependent signaling network, resulting in inhibition of pollen tube growth, cytoskeletal alterations, and programmed cell death (PCD) in incompatible pollen. We introduced the PrpS gene into Arabidopsis thaliana, a self-compatible model plant. Exposing transgenic A. thaliana pollen to recombinant Papaver PrsS protein triggered remarkably similar responses to those observed in incompatible Papaver pollen: S-specific inhibition and hallmark features of Papaver SI. Our findings demonstrate that Papaver PrpS is functional in a species with no SI system that diverged ~140 million years ago. This suggests that the Papaver SI system uses cellular targets that are, perhaps, common to all eudicots and that endogenous signaling components can be recruited to elicit a response that most likely never operated in this species. This will be of interest to biologists interested in the evolution of signaling networks in higher plants.


Asunto(s)
Arabidopsis/fisiología , Papaver/genética , Proteínas de Plantas/metabolismo , Autoincompatibilidad en las Plantas con Flores/genética , Actinas/metabolismo , Caspasa 3/metabolismo , Muerte Celular , Péptido Hidrolasas/metabolismo , Polen/metabolismo
10.
Nature ; 459(7249): 992-5, 2009 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-19483678

RESUMEN

Higher plants produce seed through pollination, using specific interactions between pollen and pistil. Self-incompatibility is an important mechanism used in many species to prevent inbreeding; it is controlled by a multi-allelic S locus. 'Self' (incompatible) pollen is discriminated from 'non-self' (compatible) pollen by interaction of pollen and pistil S locus components, and is subsequently inhibited. In Papaver rhoeas, the pistil S locus product is a small protein that interacts with incompatible pollen, triggering a Ca(2+)-dependent signalling network, resulting in pollen inhibition and programmed cell death. Here we have cloned three alleles of a highly polymorphic pollen-expressed gene, PrpS (Papaver rhoeas pollen S), from Papaver and provide evidence that this encodes the pollen S locus determinant. PrpS is a single-copy gene linked to the pistil S gene (currently called S, but referred to hereafter as PrsS for Papaver rhoeas stigma S determinant). Sequence analysis indicates that PrsS and PrpS are equally ancient and probably co-evolved. PrpS encodes a novel approximately 20-kDa protein. Consistent with predictions that it is a transmembrane protein, PrpS is associated with the plasma membrane. We show that a predicted extracellular loop segment of PrpS interacts with PrsS and, using PrpS antisense oligonucleotides, we demonstrate that PrpS is involved in S-specific inhibition of incompatible pollen. Identification of PrpS represents a major advance in our understanding of the Papaver self-incompatibility system. As a novel cell-cell recognition determinant it contributes to the available information concerning the origins and evolution of cell-cell recognition systems involved in discrimination between self and non-self, which also include histocompatibility systems in primitive chordates and vertebrates.


Asunto(s)
Papaver/fisiología , Polen/fisiología , Alelos , Secuencia de Aminoácidos , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Ligamiento Genético , Datos de Secuencia Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polen/citología , Polinización/fisiología , Reproducción/fisiología
11.
Mol Plant ; 1(4): 686-702, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19825573

RESUMEN

Pollen tubes elongate within the pistil to transport sperm cells to the embryo sac for fertilization. Growth occurs exclusively at the tube apex, rendering pollen tube elongation a most dramatic polar cell growth process. A hallmark pollen tube feature is its cytoskeleton, which comprises elaborately organized and dynamic actin microfilaments and microtubules. Pollen tube growth is dependent on the actin cytoskeleton; its organization and regulation have been examined extensively by various approaches, including fluorescent protein labeled actin-binding proteins in live cell studies. Using the previously described GFP-NtADF1 and GFP-LlADF1, and a new actin reporter protein NtPLIM2b-GFP, we re-affirm that the predominant actin structures in elongating tobacco and lily pollen tubes are long, streaming actin cables along the pollen tube shank, and a subapical structure comprising shorter actin cables. The subapical collection of actin microfilaments undergoes dynamic changes, giving rise to the appearance of structures that range from basket- or funnel-shaped, mesh-like to a subtle ring. NtPLIM2b-GFP is used in combination with a guanine nucleotide exchange factor for the Rho GTPases, AtROP-GEF1, to illustrate the use of these actin reporter proteins to explore the linkage between the polar cell growth process and its actin cytoskeleton. Contrary to the actin cytoskeleton, microtubules appear not to play a direct role in supporting the polar cell growth process in angiosperm pollen tubes. Using a microtubule reporter protein based on the microtubule end-binding protein from Arabidopsis AtEB1, GFP-AtEB1, we show that the extensive microtubule network in elongating pollen tubes displays varying degrees of dynamics. These reporter proteins provide versatile tools to explore the functional connection between major structural and signaling components of the polar pollen tube growth process.


Asunto(s)
Actinas/metabolismo , Técnicas Citológicas/métodos , Genes Reporteros , Microtúbulos/metabolismo , Tubo Polínico/citología , Tubo Polínico/metabolismo , Arabidopsis/metabolismo , Supervivencia Celular , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Plantas/metabolismo , Unión Proteica , Nicotiana/citología , Nicotiana/metabolismo , Transformación Genética
12.
Nature ; 444(7118): 490-3, 2006 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-17086195

RESUMEN

In higher plants, sexual reproduction involves interactions between pollen and pistil. A key mechanism to prevent inbreeding is self-incompatibility through rejection of incompatible ('self') pollen. In Papaver rhoeas, S proteins encoded by the stigma interact with incompatible pollen, triggering a Ca2+-dependent signalling network resulting in pollen tube inhibition and programmed cell death. The cytosolic phosphoprotein p26.1, which has been identified in incompatible pollen, shows rapid, self-incompatibility-induced Ca2+-dependent hyperphosphorylation in vivo. Here we show that p26.1 comprises two proteins, Pr-p26.1a and Pr-p26.1b, which are soluble inorganic pyrophosphatases (sPPases). These proteins have classic Mg2+-dependent sPPase activity, which is inhibited by Ca2+, and unexpectedly can be phosphorylated in vitro. We show that phosphorylation inhibits sPPase activity, establishing a previously unknown mechanism for regulating eukaryotic sPPases. Reduced sPPase activity is predicted to result in the inhibition of many biosynthetic pathways, suggesting that there may be additional mechanisms of self-incompatibility-mediated pollen tube inhibition. We provide evidence that sPPases are required for growth and that self-incompatibility results in an increase in inorganic pyrophosphate, implying a functional role for Pr-p26.1.


Asunto(s)
Papaver/enzimología , Proteínas de Plantas/metabolismo , Tubo Polínico/crecimiento & desarrollo , Polen/enzimología , Pirofosfatasas/metabolismo , Endogamia , Datos de Secuencia Molecular , Papaver/fisiología , Fosfoproteínas/metabolismo , Proteínas de Plantas/química , Pirofosfatasas/química , Solubilidad
13.
Plant Cell ; 17(9): 2564-79, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16100336

RESUMEN

Pollen tube growth is a polarized growth process whereby the tip-growing tubes elongate within the female reproductive tissues to deliver sperm cells to the ovules for fertilization. Efficient and regulated membrane trafficking activity incorporates membrane and deposits cell wall molecules at the tube apex and is believed to underlie rapid and focused growth at the pollen tube tip. Rab GTPases, key regulators of membrane trafficking, are candidates for important roles in regulating pollen tube growth. We show that a green fluorescent protein-tagged Nicotiana tabacum pollen-expressed Rab11b is localized predominantly to an inverted cone-shaped region in the pollen tube tip that is almost exclusively occupied by transport vesicles. Altering Rab11 activity by expressing either a constitutive active or a dominant negative variant of Rab11b in pollen resulted in reduced tube growth rate, meandering pollen tubes, and reduced male fertility. These mutant GTPases also inhibited targeting of exocytic and recycled vesicles to the pollen tube inverted cone region and compromised the delivery of secretory and cell wall proteins to the extracellular matrix. Properly regulated Rab11 GTPase activity is therefore essential for tip-focused membrane trafficking and growth at the pollen tube apex and is pivotal to reproductive success.


Asunto(s)
Flores/crecimiento & desarrollo , Nicotiana/citología , Nicotiana/enzimología , Proteínas de Plantas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Actinas/metabolismo , Transporte Biológico/fisiología , Membrana Celular/metabolismo , Pared Celular/metabolismo , Endocitosis/fisiología , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Mutación , Proteínas de Plantas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Nicotiana/fisiología , Proteínas de Unión al GTP rab/genética
14.
Philos Trans R Soc Lond B Biol Sci ; 358(1434): 1033-6, 2003 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-12831469

RESUMEN

Sexual reproduction in flowering plants is controlled by recognition mechanisms involving the male gametophyte (the pollen) and the female sporophyte (the pistil). Self-incompatibility (SI) involves the recognition and rejection of self- or incompatible pollen by the pistil. In Papaver rhoeas, SI uses a Ca(2+)-based signalling cascade triggered by the S-protein, which is encoded by the stigmatic component of the S-locus. This results in the rapid inhibition of incompatible pollen tube growth. We have identified several targets of the SI signalling cascade, including protein kinases, the actin cytoskeleton and nuclear DNA. Here, we summarize progress made on currently funded projects in our laboratory investigating some of the components targeted by SI, comprising (i) the characterization of a pollen phosphoprotein (p26) that is rapidly phosphorylated upon an incompatible SI response; (ii) the identification and characterization of a pollen mitogen-activated protein kinase (p56), which exhibits enhanced activation during SI; (iii) characterizing components involved in the reorganization and depolymerization of the actin cytoskeleton during the SI response; and (iv) investigating whether the SI response involves a programmed cell death signalling cascade.


Asunto(s)
Papaver/fisiología , Actinas/fisiología , Calcio/metabolismo , Citoesqueleto/fisiología , Endogamia , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Papaver/enzimología , Polen/fisiología , Transducción de Señal
15.
Plant Cell ; 14(4): 945-62, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11971147

RESUMEN

Pollen tube elongation depends on the secretion of large amounts of membrane and cell wall materials at the pollen tube tip to sustain rapid growth. A large family of RAS-related small GTPases, Rabs or Ypts, is known to regulate both anterograde and retrograde trafficking of transport vesicles between different endomembrane compartments and the plasma membrane in mammalian and yeast cells. Studies on the functional roles of analogous plant proteins are emerging. We report here that a tobacco pollen-predominant Rab2, NtRab2, functions in the secretory pathway between the endoplasmic reticulum and the Golgi in elongating pollen tubes. Green fluorescent protein-NtRab2 fusion protein localized to the Golgi bodies in elongating pollen tubes. Dominant-negative mutations in NtRab2 proteins inhibited their Golgi localization, blocked the delivery of Golgi-resident as well as plasmalemma and secreted proteins to their normal locations, and inhibited pollen tube growth. On the other hand, when green fluorescent protein-NtRab2 was over-expressed in transiently transformed leaf protoplasts and epidermal cells, in which NtRab2 mRNA have not been observed to accumulate to detectable levels, these proteins did not target efficiently to Golgi bodies. Together, these observations indicate that NtRab2 is important for trafficking between the endoplasmic reticulum and the Golgi bodies in pollen tubes and may be specialized to optimally support the high secretory demands in these tip growth cells.


Asunto(s)
Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Nicotiana/metabolismo , Polen/crecimiento & desarrollo , Proteína de Unión al GTP rab2/fisiología , Transporte Biológico , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Electrónica , Mutación , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Polen/genética , Polen/ultraestructura , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Nicotiana/genética , Proteína de Unión al GTP rab2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA