Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 106(19-20): 6535-6549, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36069927

RESUMEN

Nannochloropsis oceanica is a unicellular oleaginous microalga of emerging biotechnological interest with a sequenced, annotated genome, available transcriptomic and proteomic data, and well-established basic molecular tools for genetic engineering. To establish N. oceanica as a eukaryotic host for recombinant protein synthesis and develop molecular technology for vaccine production, we chose the viral surface protein 2 (VP2) of a pathogenic fish virus that causes infectious pancreatic necrosis as a model vaccine. Upon stable nuclear transformation of N. oceanica strain CCMP1779 with the codon-optimized VP2 gene, a Venus reporter fusion served to evaluate the strength of different endogenous promoters in transformant populations by qPCR and flow cytometry. The highest VP2 yields were achieved for the elongation factor promoter, with enhancer effects by its N-terminal leader sequence. Individual transformants differed in their production capability of reporter-free VP2 by orders of magnitude. When subjecting the best candidates to kinetic analyses of growth and VP2 production in photobioreactors, recombinant protein integrity was maintained until the early stationary growth phase, and a high yield of 4.4% VP2 of total soluble protein was achieved. The maximum yield correlated with multiple integrations of the expression vector into the nuclear genome. The results demonstrate that N. oceanica was successfully engineered to constitute a robust platform for high-level production of a model subunit vaccine. The molecular methodology established here can likely be adapted in a straightforward manner to the production of further vaccines in the same host, allowing their distribution to fish, vertebrates, or humans via a microalgae-containing diet. KEY POINTS: • We engineered N. oceanica for recombinant protein production. • The antigenic surface protein 2 of IPN virus could indeed be expressed in the host. • A high yield of 4.4% VP2 of total soluble protein was achieved in N. oceanica.


Asunto(s)
Virus de la Necrosis Pancreática Infecciosa , Estramenopilos , Vacunas Virales , Animales , Peces , Humanos , Virus de la Necrosis Pancreática Infecciosa/genética , Proteínas de la Membrana , Factores de Elongación de Péptidos , Proteómica , Proteínas Recombinantes/genética , Estramenopilos/genética , Vacunación , Vacunas Virales/genética
2.
Microbiol Spectr ; 10(4): e0063322, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35913168

RESUMEN

Microalgae are one of the most dominant forms of life on earth that is tightly associated with a distinct and specialized microbiota. We have previously shown that the microbiota of Scenedesmus quadricauda harbors less than 10 distinct microbial species. Here, we provide evidence that dominant species are affiliated with the genera of Variovorax, Porphyrobacter, and Dyadobacter. Experimental and transcriptome-based evidence implies that within this multispecies interaction, Dyadobacter is a key to alga growth and fitness and is highly adapted to live in the phycosphere. While presumably under light conditions the alga provides the energy source to the bacteria, Dyadobacter produces and releases mainly a large variety of polysaccharides modifying enzymes. This is coherent with high-level expression of the T9SS in alga cocultures. The transcriptome data further imply that quorum-quenching proteins (QQ) and biosynthesis of vitamins B1, B2, B5, B6, and B9 are expressed by Dyadobacter at high levels in comparison to Variovorax and Porphyrobacter. Notably, Dyadobacter produces a significant number of leucine-rich repeat (LRR) proteins and enzymes involved in bacterial reactive oxygen species (ROS) tolerance. Complementary to this, Variovorax expresses the genes of the biosynthesis of vitamins B2, B5, B6, B7, B9, and B12, and Porphyrobacter is specialized in the production of vitamins B2 and B6. Thus, the shared currency between partners are vitamins, microalgae growth-promoting substances, and dissolved carbon. This work significantly enlarges our knowledge on alga-bacteria interaction and demonstrates physiological investigations of microalgae and associated bacteria, using microscopy observations, photosynthetic activity measurements, and flow cytometry. IMPORTANCE The current study gives a detailed insight into mutualistic collaboration of microalgae and bacteria, including the involvement of competitive interplay between bacteria. We provide experimental evidence that Gram-negative bacteria belonging to the Dyadobacter, Porphyrobacter, and Variovorax are the key players in a Scenedesmus quadricauda alga-bacteria interaction. We impart strong evidence that Dyadobacter produces and releases polysaccharides degradation enzymes and leucine-rich repeat proteins; Variovorax supplies the consortium with auxins and vitamin B12, while Porphyrobacter produces a broad spectrum of B vitamins. We show not only that the microalgae collaborate with the bacteria and vice versa but also that the bacteria interact with each other via quorum-sensing and secretion system mechanisms. The shared currency between partners appears to be vitamins, microalgae growth-promoting substances, and dissolved carbon.


Asunto(s)
Microalgas , Microbiota , Scenedesmus , Bacterias/metabolismo , Carbono/metabolismo , Microalgas/metabolismo , Polisacáridos , Vitaminas/metabolismo
3.
World J Microbiol Biotechnol ; 37(9): 163, 2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34453200

RESUMEN

Photoautotrophic microalgae have become intriguing hosts for recombinant protein production because they offer important advantages of both prokaryotic and eukaryotic expression systems. Advanced molecular tools have recently been established for the biotechnologically relevant group of stramenopile microalgae, particularly for several Nannochloropsis species and diatoms. Strategies for the selection of powerful genetic elements and for optimization of protein production have been reported. Much needed high-throughput techniques required for straight-forward identification and selection of the best expression constructs and transformants have become available and are discussed. The first recombinant proteins have already been produced successfully in stramenopile microalgae and include not only several subunit vaccines but also one antimicrobial peptide, a fish growth hormone, and an antibody. These research results offer interesting future applications in aquaculture and as biopharmaceuticals. In this review we highlight recent progress in genetic technology development for recombinant protein production in the most relevant Nannochloropsis species and diatoms. Diverse realistic biotechnological applications of these proteins are emphasized that have the potential to establish stramenopile algae as sustainable green factories for an economically competitive production of high-value biomolecules.


Asunto(s)
Productos Biológicos/metabolismo , Microalgas/metabolismo , Proteínas Recombinantes/biosíntesis , Estramenopilos/metabolismo , Biotecnología/métodos , Biotecnología/tendencias , Microalgas/genética , Proteínas Recombinantes/genética , Estramenopilos/genética
4.
Front Cell Dev Biol ; 8: 593922, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33330478

RESUMEN

The stramenopile alga Nannochloropsis evolved by secondary endosymbiosis of a red alga by a heterotrophic host cell and emerged as a promising organism for biotechnological applications, such as the production of polyunsaturated fatty acids and biodiesel. Peroxisomes play major roles in fatty acid metabolism but experimental analyses of peroxisome biogenesis and metabolism in Nannochloropsis are not reported yet. In fungi, animals, and land plants, soluble proteins of peroxisomes are targeted to the matrix by one of two peroxisome targeting signals (type 1, PTS1, or type 2, PTS2), which are generally conserved across kingdoms and allow the prediction of peroxisomal matrix proteins from nuclear genome sequences. Because diatoms lost the PTS2 pathway secondarily, we investigated its presence in the stramenopile sister group of diatoms, the Eustigmatophyceae, represented by Nannochloropsis. We detected a full-length gene of a putative PEX7 ortholog coding for the cytosolic receptor of PTS2 proteins and demonstrated its expression in Nannochloropsis gaditana. The search for predicted PTS2 cargo proteins in N. gaditana yielded several candidates. In vivo subcellular targeting analyses of representative fusion proteins in different plant expression systems demonstrated that two predicted PTS2 domains were indeed functional and sufficient to direct a reporter protein to peroxisomes. Peroxisome targeting of the predicted PTS2 cargo proteins was further confirmed in Nannochloropsis oceanica by confocal and transmission electron microscopy. Taken together, the results demonstrate for the first time that one group of stramenopile algae maintained the import pathway for PTS2 cargo proteins. To comprehensively map and model the metabolic capabilities of Nannochloropsis peroxisomes, in silico predictions needs to encompass both the PTS1 and the PTS2 matrix proteome.

5.
Appl Microbiol Biotechnol ; 104(20): 8747-8760, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32902683

RESUMEN

Photoautotrophic microalgae offer a great potential as novel hosts for efficient recombinant protein production. Nannochloropsis oceanica produces an extraordinarily high content of polyunsaturated fatty acids, and its robust growth characteristics, published genome sequence and efficient nuclear transformation make N. oceanica a promising candidate for biotechnological applications. To establish a robust and flexible system for recombinant protein production, we cloned six endogenous, potentially constitutive or inducible promoters from N. oceanica strain CCMP1779 and investigated their strength using monomeric Venus as reporter gene. Microscopic pre-screening of individual transformants revealed that the promoters of elongation factor (EF), tubulin (TUB) and nitrate reductase (NR) enabled high reporter gene expression. Comparative quantitative analyses of transformant populations by flow cytometry and qRT-PCR demonstrated the highest Venus expression from the EF promoter and the NR promoter if extended by an N-terminal 14-amino acid leader sequence. The kinetics of reporter gene expression were analysed during photobioreactor cultivation, achieving Venus yields of 0.3% (for EF) and 4.9% (for NR::LS) of total soluble protein. Since inducible expression systems enable the production of toxic proteins, we developed an auto-induction medium for the NR promoter transformants. By switching the N source from ammonium to nitrate in the presence of low ammonium concentrations, the starting point of Venus induction could be fine-tuned and shifted towards exponential growth phase while maintaining high recombinant protein yields. Taken together, we demonstrate that a model recombinant protein can be produced robustly and at very high levels in N. oceanica not only under constitutive but also under auto-inducible cultivation conditions. KEY POINTS: • Nannochloropsis oceanica might serve as host for recombinant protein production. • Comparative promoter strength analyses were conducted for twelve different constructs. • Robust high-yield recombinant protein production was achieved under constitutive conditions. • The nitrate reductase promoter enabled protein production under auto-induction conditions.


Asunto(s)
Microalgas , Estramenopilos , Biotecnología , Ácidos Grasos Insaturados , Microalgas/genética , Proteínas Recombinantes/genética , Estramenopilos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...