Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem C Nanomater Interfaces ; 128(13): 5515-5523, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38595773

RESUMEN

We study the electrocatalytic oxygen evolution reaction using in situ X-ray absorption spectroscopy (XAS) to track the dynamics of the valence state and the covalence of the metal ions of LaFeO3 and LaFeO3/LaNiO3 thin films. The active materials are 8 unit cells grown epitaxially on 100 nm conductive La0.67Sr0.33MnO3 layers using pulsed laser deposition (PLD). The perovskite layers are supported on monolayer Ca2Nb3O10 nanosheet-buffered 100 nm SiNx membranes. The in situ Fe and Ni K-edges XAS spectra were measured from the backside of the SiNx membrane using fluorescence yield detection under electrocatalytic reaction conditions. The XAS spectra show significant spectral changes, which indicate that (1) the metal (co)valencies increase, and (2) the number of 3d electrons remains constant with applied potential. We find that the whole 8 unit cells react to the potential changes, including the buried LaNiO3 film.

2.
Chem Sci ; 15(9): 3300-3310, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38425509

RESUMEN

This work presents a spectroscopic and photocatalytic comparison of water splitting using yttrium iron garnet (Y3Fe5O12, YIG) and hematite (α-Fe2O3) photoanodes. Despite similar electronic structures, YIG significantly outperforms widely studied hematite, displaying more than an order of magnitude increase in photocurrent density. Probing the charge and spin dynamics by ultrafast, surface-sensitive XUV spectroscopy reveals that the enhanced performance arises from (1) reduced polaron formation in YIG compared to hematite and (2) an intrinsic spin polarization of catalytic photocurrents in YIG. Ultrafast XUV measurements show a reduction in the formation of surface electron polarons compared to hematite due to site-dependent electron-phonon coupling. This leads to spin polarized photocurrents in YIG where efficient charge separation occurs on the Td sub-lattice compared to fast trapping and electron/hole pair recombination on the Oh sub-lattice. These lattice-dependent dynamics result in a long-lived spin aligned hole population at the YIG surface, which is directly observed using XUV magnetic circular dichroism. Comparison of the Fe M2,3 and O L1-edges show that spin aligned holes are hybridized between O 2p and Fe 3d valence band states, and these holes are responsible for highly efficient, spin selective water oxidation by YIG. Together, these results point to YIG as a new platform for highly efficient, spin selective photocatalysis.

3.
Small Methods ; 8(1): e2300833, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37806773

RESUMEN

Solid-state sodium ion conductors are crucial for the next generation of all-solid-state sodium batteries with high capacity, low cost, and improved safety. Sodium closo-carbadodecaborate (NaCB11 H12 ) is an attractive Na-ion conductor owing to its high thermal, electrochemical, and interfacial stability. Mechanical milling has recently been shown to increase conductivity by five orders of magnitude at room temperature, making it appealing for application in all-solid-state sodium batteries. Intriguingly, milling longer than 2 h led to a significant decrease in conductivity. In this study, X-ray Raman scattering (XRS) spectroscopy is used to probe the origin of the anomalous impact of mechanical treatment on the ionic conductivity of NaCB11 H12 . The B, C, and Na K-edge XRS spectra are successfully measured for the first time, and ab initio calculations are employed to interpret the results. The experimental and computational results reveal that the decrease in ionic conductivity upon prolonged milling is due to the increased proximity of Na to the CB11 H12 cage, caused by severe distortion of the long-range structure. Overall, this work demonstrates how the XRS technique, allowing investigation of low Z elements such as C and B in the bulk, can be used to acquire valuable information on the electronic structure of solid electrolytes and battery materials in general.

4.
Struct Dyn ; 10(5): 054501, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37841290

RESUMEN

Free-electron lasers provide bright, ultrashort, and monochromatic x-ray pulses, enabling novel spectroscopic measurements not only with femtosecond temporal resolution: The high fluence of their x-ray pulses can also easily enter the regime of the non-linear x-ray-matter interaction. Entering this regime necessitates a rigorous analysis and reliable prediction of the relevant non-linear processes for future experiment designs. Here, we show non-linear changes in the L3-edge absorption of metallic nickel thin films, measured with fluences up to 60 J/cm2. We present a simple but predictive rate model that quantitatively describes spectral changes based on the evolution of electronic populations within the pulse duration. Despite its simplicity, the model reaches good agreement with experimental results over more than three orders of magnitude in fluence, while providing a straightforward understanding of the interplay of physical processes driving the non-linear changes. Our findings provide important insights for the design and evaluation of future high-fluence free-electron laser experiments and contribute to the understanding of non-linear electron dynamics in x-ray absorption processes in solids at the femtosecond timescale.

5.
Inorg Chem ; 62(27): 10613-10625, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37369076

RESUMEN

High-valent iron species have been implicated as key intermediates in catalytic oxidation reactions, both in biological and synthetic systems. Many heteroleptic Fe(IV) complexes have now been prepared and characterized, especially using strongly π-donating oxo, imido, or nitrido ligands. On the other hand, homoleptic examples are scarce. Herein, we investigate the redox chemistry of iron complexes of the dianonic tris-skatylmethylphosphonium (TSMP2-) scorpionate ligand. One-electron oxidation of the tetrahedral, bis-ligated [(TSMP)2FeII]2- leads to the octahedral [(TSMP)2FeIII]-. The latter undergoes thermal spin-cross-over both in the solid state and solution, which we characterize using superconducting quantum inference device (SQUID), Evans method, and paramagnetic nuclear magnetic resonance spectroscopy. Furthermore, [(TSMP)2FeIII]- can be reversibly oxidized to the stable high-valent [(TSMP)2FeIV]0 complex. We use a variety of electrochemical, spectroscopic, and computational techniques as well as SQUID magnetometry to establish a triplet (S = 1) ground state with a metal-centered oxidation and little spin delocalization on the ligand. The complex also has a fairly isotropic g-tensor (giso = 1.97) combined with a positive zero-field splitting (ZFS) parameter D (+19.1 cm-1) and very low rhombicity, in agreement with quantum chemical calculations. This thorough spectroscopic characterization contributes to a general understanding of octahedral Fe(IV) complexes.

6.
Nat Commun ; 14(1): 2749, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173301

RESUMEN

A photon carrying one unit of angular momentum can change the spin angular momentum of a magnetic system with one unit (ΔMs = ±1) at most. This implies that a two-photon scattering process can manipulate the spin angular momentum of the magnetic system with a maximum of two units. Herein we describe a triple-magnon excitation in α-Fe2O3, which contradicts this conventional wisdom that only 1- and 2-magnon excitations are possible in a resonant inelastic X-ray scattering experiment. We observe an excitation at exactly three times the magnon energy, along with additional excitations at four and five times the magnon energy, suggesting quadruple and quintuple-magnons as well. Guided by theoretical calculations, we reveal how a two-photon scattering process can create exotic higher-rank magnons and the relevance of these quasiparticles for magnon-based applications.

7.
Inorg Chem ; 62(9): 3738-3760, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36808900

RESUMEN

A new methodology based on an adaptive grid algorithm followed by an analysis of the ground state from the fit parameters is presented to analyze and interpret experimental XAS L2,3-edge data. The fitting method is tested first in a series of multiplet calculations for d0-d7 systems and for which the solution is known. In most cases, the algorithm is able to find the solution, except for a mixed-spin Co2+ Oh complex, where it instead revealed a correlation between the crystal field and the electron repulsion parameters near spin-crossover transition points. Furthermore, the results for the fitting of previously published experimental data sets on CaO, CaF2, MnO, LiMnO2, and Mn2O3 are presented and their solution discussed. The presented methodology has allowed the evaluation of the Jahn-Teller distortion in LiMnO2, which is consistent with the observed implications in the development of batteries, which use this material. Moreover, a follow-up analysis of the ground state in Mn2O3 has demonstrated an unusual ground state for the highly distorted site which would be impossible to optimize in a perfect octahedral environment. Ultimately, the presented methodology can be used in the analysis of X-ray absorption spectroscopy data measured at the L2,3-edge for a large number of materials and molecular complexes of first-row transition metals and can be expanded to the analysis of other X-ray spectroscopic data in future studies.

8.
J Phys Chem C Nanomater Interfaces ; 126(20): 8752-8759, 2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35655938

RESUMEN

We present the cobalt 2p3d resonant inelastic X-ray scattering (RIXS) spectra of Co3O4. Guided by multiplet simulation, the excited states at 0.5 and 1.3 eV can be identified as the 4 T 2 excited state of the tetrahedral Co2+ and the 3 T 2g excited state of the octahedral Co3+, respectively. The ground states of Co2+ and Co3+ sites are determined to be high-spin 4 A 2(T d ) and low-spin 1 A 1g (Oh ), respectively. It indicates that the high-spin Co2+ is the magnetically active site in Co3O4. Additionally, the ligand-to-metal charge transfer analysis shows strong orbital hybridization between the cobalt and oxygen ions at the Co3+ site, while the hybridization is weak at the Co2+ site.

9.
ACS Catal ; 12(11): 6628-6639, 2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35692251

RESUMEN

Despite the great commercial relevance of zinc-promoted copper catalysts for methanol synthesis, the nature of the Cu-ZnO x synergy and the nature of the active Zn-based promoter species under industrially relevant conditions are still a topic of vivid debate. Detailed characterization of the chemical speciation of any promoter under high-pressure working conditions is challenging but specifically hampered by the large fraction of Zn spectator species bound to the oxidic catalyst support. We present the use of weakly interacting graphitic carbon supports as a tool to study the active speciation of the Zn promoter phase that is in close contact with the Cu nanoparticles using time-resolved X-ray absorption spectroscopy under working conditions. Without an oxidic support, much fewer Zn species need to be added for maximum catalyst activity. A 5-15 min exposure to 1 bar H2 at 543 K only slightly reduces the Zn(II), but exposure for several hours to 20 bar H2/CO and/or H2/CO/CO2 leads to an average Zn oxidation number of +(0.5-0.6), only slightly increasing to +0.8 in a 20 bar H2/CO2 feed. This means that most of the added Zn is in a zerovalent oxidation state during methanol synthesis conditions. The Zn average coordination number is 8, showing that this phase is not at the surface but surrounded by other metal atoms (whether Zn or Cu), and indicating that the Zn diffuses into the Cu nanoparticles under reaction conditions. The time scale of this process corresponds to that of the generally observed activation period for these catalysts. These results reveal the speciation of the relevant Zn promoter species under methanol synthesis conditions and, more generally, present the use of weakly interacting graphitic supports as an important strategy to avoid excessive spectator species, thereby allowing us to study the nature of relevant promoter species.

10.
Nat Commun ; 13(1): 2531, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35534509

RESUMEN

Carrier dynamics affects photocatalytic systems, but direct and real-time observations in an element-specific and energy-level-specific manner are challenging. In this study, we demonstrate that the dynamics of photo-generated holes in metal oxides can be directly probed by using femtosecond X-ray absorption spectroscopy at an X-ray free-electron laser. We identify the energy level and life time of holes with a long life time (230 pico-seconds) in nano-crystal materials. We also observe that trapped holes show an energy distribution in the bandgap region with a formation time of 0.3 pico-seconds and a decay time of 8.0 pico-seconds at room temperature. We corroborate the dynamics of the electrons by using X-ray absorption spectroscopy at the metal L-edges in a consistent explanation with that of the holes.

11.
J Phys Chem Lett ; 13(19): 4207-4214, 2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35512383

RESUMEN

Hematite (α-Fe2O3) is a photoelectrode for the water splitting process because of its relatively narrow bandgap and abundance in the earth's crust. In this study, the photoexcited state of a hematite thin film was investigated with femtosecond oxygen K-edge X-ray absorption spectroscopy (XAS) at the PAL-XFEL in order to follow the dynamics of its photoexcited states. The 200 fs decay time of the hole state in the valence band was observed via its corresponding XAS feature.

12.
Phys Rev Lett ; 127(18): 186402, 2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34767399

RESUMEN

Magnetite is one of the most fascinating materials exhibiting the enigmatic first-order Verwey transition which is conventionally manipulated through chemical doping. Here, we show that heating magnetite results in a spontaneous charge reordering and, consequently, a hole self-doping effect at the octahedral sublattice. Core-level x-ray spectroscopy measurements combined with theory uncovers that there are three regimes of self-doping that map the temperature dependence of the electrical conductivity and magnetism up to the Curie temperature. Our results provide an elegant analogy between the effect of chemical doping and temperature-driven self-doping on trimerons in magnetite.

13.
J Phys Chem C Nanomater Interfaces ; 125(13): 7329-7336, 2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33859771

RESUMEN

Copper tungstate (CuWO4) is an important semiconductor with a sophisticated and debatable electronic structure that has a direct impact on its chemistry. Using the PAL-XFEL source, we study the electronic dynamics of photoexcited CuWO4. The Cu L3 X-ray absorption spectrum shifts to lower energy upon photoexcitation, which implies that the photoexcitation process from the oxygen valence band to the tungsten conduction band effectively increases the charge density on the Cu atoms. The decay time of this spectral change is 400 fs indicating that the increased charge density exists only for a very short time and relaxes electronically. The initial increased charge density gives rise to a structural change on a time scale longer than 200 ps.

14.
Sci Rep ; 11(1): 5250, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33664335

RESUMEN

We have successfully fabricated high quality single crystalline La0.7Sr0.3MnO3 (LSMO) film in the freestanding form that can be transferred onto silicon wafer and copper mesh support. Using soft x-ray absorption (XAS) and resonant inelastic x-ray scattering (RIXS) spectroscopy in transmission and reflection geometries, we demonstrate that the x-ray emission from Mn 3s-2p core-to-core transition (3sPFY) seen in the RIXS maps can represent the bulk-like absorption signal with minimal self-absorption effect around the Mn L3-edge. Similar measurements were also performed on a reference LSMO film grown on the SrTiO3 substrate and the agreement between measurements substantiates the claim that the bulk electronic structures can be preserved even after the freestanding treatment process. The 3sPFY spectrum obtained from analyzing the RIXS maps offers a powerful way to probe the bulk electronic structures in thin films and heterostructures when recording the XAS spectra in the transmission mode is not available.

15.
ACS Nano ; 15(3): 5333-5340, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33656851

RESUMEN

Design and synthesis of effective electrocatalysts for hydrogen evolution reaction (HER) in wide pH environments are critical to reduce energy losses in water electrolyzers. Here, by using a self-activation strategy, we construct an atomic nickel (Ni) decorated nanoporous iridium (Ir) catalyst, which can create the reaction-favorable chemical environment and maximize the electrochemical active surface area (ECSA), enabling efficient HER over a wide pH range. By using operando X-ray absorption spectroscopy and theoretical calculations, the atomic Ni sites are identified as the synergistic sites, which not only accelerate the water dissociation under operation conditions but also activate the surface Ir sites thus leading to the efficient H2 generation. This work highlights the significance of atomic-level decorating strategy which can optimize the activity of surface Ir atoms with negligible sacrifice of the ECSA.

16.
Nat Commun ; 12(1): 1687, 2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33727537

RESUMEN

Maximizing the catalytic activity of single-atom catalysts is vital for the application of single-atom catalysts in industrial water-alkali electrolyzers, yet the modulation of the catalytic properties of single-atom catalysts remains challenging. Here, we construct strain-tunable sulphur vacancies around single-atom Ru sites for accelerating the alkaline hydrogen evolution reaction of single-atom Ru sites based on a nanoporous MoS2-based Ru single-atom catalyst. By altering the strain of this system, the synergistic effect between sulphur vacancies and Ru sites is amplified, thus changing the catalytic behavior of active sites, namely, the increased reactant density in strained sulphur vacancies and the accelerated hydrogen evolution reaction process on Ru sites. The resulting catalyst delivers an overpotential of 30 mV at a current density of 10 mA cm-2, a Tafel slope of 31 mV dec-1, and a long catalytic lifetime. This work provides an effective strategy to improve the activities of single-atom modified transition metal dichalcogenides catalysts by precise strain engineering.

17.
J Synchrotron Radiat ; 28(Pt 1): 247-258, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33399575

RESUMEN

A procedure to build the optical conductivity tensor that describes the full magneto-optical response of the system from experimental measurements is presented. Applied to the Fe L2,3-edge of a 38.85 nm Fe3O4/SrTiO3 (001) thin-film, it is shown that the computed polarization dependence using the conductivity tensor is in excellent agreement with that experimentally measured. Furthermore, the magnetic field angular dependence is discussed using a set of fundamental spectra expanded on spherical harmonics. It is shown that the convergence of this expansion depends on the details of the ground state of the system in question and in particular on the valence-state spin-orbit coupling. While a cubic expansion up to the third order explains the angular-dependent X-ray magnetic linear dichroism of Fe3+ well, higher-order terms are required for Fe2+ when the orbital moment is not quenched.

18.
Nat Commun ; 11(1): 2701, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32483164

RESUMEN

Designing efficient single-atom catalysts (SACs) for oxygen evolution reaction (OER) is critical for water-splitting. However, the self-reconstruction of isolated active sites during OER not only influences the catalytic activity, but also limits the understanding of structure-property relationships. Here, we utilize a self-reconstruction strategy to prepare a SAC with isolated iridium anchored on oxyhydroxides, which exhibits high catalytic OER performance with low overpotential and small Tafel slope, superior to the IrO2. Operando X-ray absorption spectroscopy studies in combination with theory calculations indicate that the isolated iridium sites undergo a deprotonation process to form the multiple active sites during OER, promoting the O-O coupling. The isolated iridium sites are revealed to remain dispersed due to the support effect during OER. This work not only affords the rational design strategy of OER SACs at the atomic scale, but also provides the fundamental insights of the operando OER mechanism for highly active OER SACs.

19.
Chem Rev ; 120(9): 4056-4110, 2020 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-32275144

RESUMEN

We review oxygen K-edge X-ray absorption spectra of both molecules and solids. We start with an overview of the main experimental aspects of oxygen K-edge X-ray absorption measurements including X-ray sources, monochromators, and detection schemes. Many recent oxygen K-edge studies combine X-ray absorption with time and spatially resolved measurements and/or operando conditions. The main theoretical and conceptual approximations for the simulation of oxygen K-edges are discussed in the Theory section. We subsequently discuss oxygen atoms and ions, binary molecules, water, and larger molecules containing oxygen, including biomolecular systems. The largest part of the review deals with the experimental results for solid oxides, starting from s- and p-electron oxides. Examples of theoretical simulations for these oxides are introduced in order to show how accurate a DFT description can be in the case of s and p electron overlap. We discuss the general analysis of the 3d transition metal oxides including discussions of the crystal field effect and the effects and trends in oxidation state and covalency. In addition to the general concepts, we give a systematic overview of the oxygen K-edges element by element, for the s-, p-, d-, and f-electron systems.

20.
Angew Chem Int Ed Engl ; 59(36): 15610-15617, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32011783

RESUMEN

To gain insight into the underlying mechanisms of catalyst durability for the selective catalytic reduction (SCR) of NOx with an ammonia reductant, we employed scanning transmission X-ray microscopy (STXM) to study Cu-exchanged zeolites with the CHA and MFI framework structures before and after simulated 135 000-mile aging. X-ray absorption near-edge structure (XANES) measurements were performed at the Al K- and Cu L-edges. The local environment of framework Al, the oxidation state of Cu, and geometric changes were analyzed, showing a multi-factor-induced catalytic deactivation. In Cu-exchanged MFI, a transformation of CuII to CuI and Cux Oy was observed. We also found a spatial correlation between extra-framework Al and deactivated Cu species near the surface of the zeolite as well as a weak positive correlation between the amount of CuI and tri-coordinated Al. By inspecting both Al and Cu in fresh and aged Cu-exchanged zeolites, we conclude that the importance of the preservation of isolated CuII sites trumps that of Brønsted acid sites for NH3 -SCR activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA