Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 6(4): 2228-37, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24425208

RESUMEN

Nanopores in arrays on silicon chips are functionalized with pH-responsive poly(methacrylic acid) (PMAA) brushes and used as supports for pore-spanning lipid bilayers with integrated membrane proteins. Robust platforms are created by the covalent grafting of polymer brushes using surface-initiated atom transfer radical polymerization (ATRP), resulting in sensor chips that can be successfully reused over several assays. His-tagged proteins are selectively and reversibly bound to the nitrilotriacetic acid (NTA) functionalization of the PMAA brush, and consequently lipid bilayer membranes are formed. The enhanced membrane resistance as determined by electrochemical impedance spectroscopy and free diffusion of dyed lipids observed as fluorescence recovery after photobleaching confirmed the presence of lipid bilayers. Immobilization of the His-tagged membrane proteins on the NTA-modified PMAA brush near the pore edges is characterized by fluorescence microscopy. This system allows us to adjust the protein density in free-standing bilayers, which are stabilized by the polymer brush underneath. The potential application of the integrated platform for ion channel protein assays is demonstrated.


Asunto(s)
Membrana Dobles de Lípidos , Proteínas de la Membrana/química , Nanoestructuras/química , Ácidos Polimetacrílicos/química , Concentración de Iones de Hidrógeno , Membrana Dobles de Lípidos/síntesis química , Membrana Dobles de Lípidos/química , Ácido Nitrilotriacético/química
2.
ACS Appl Mater Interfaces ; 5(4): 1400-7, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23360664

RESUMEN

Several nanoporous platforms were functionalized with pH-responsive poly(methacrylic acid) (PMAA) brushes using surface-initiated atom transfer radical polymerization (SI-ATRP). The growth of the PMAA brush and its pH-responsive behavior from the nanoporous platforms were confirmed by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and atomic force microscopy (AFM). The swelling behavior of the pH-responsive PMAA brushes grafted only from the nanopore walls was investigated by AFM in aqueous liquid environment with pH values of 4 and 8. AFM images displayed open nanopores at pH 4 and closed ones at pH 8, which rationalizes their use as gating platforms. Ion conductivity across the nanopores was investigated with current-voltage measurements at various pH values. Enhanced higher resistance across the nanopores was observed in a neutral polymer brush state (lower pH values) and lower resistance when the brush was charged (higher pH values). By adding a fluorescent dye in an environment of pH 4 or pH 8 at one side of the PMAA-brush functionalized nanopore array chips, diffusion across the nanopores was followed. These experiments displayed faster diffusion rates of the fluorescent molecules at pH 4 (PMAA neutral state, open pores) and slower diffusion at pH 8 (PMAA charged state, closed pores) showing the potential of this technology toward nanoscale valve applications.

3.
Langmuir ; 26(22): 17513-9, 2010 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-20932041

RESUMEN

Responsive polymeric brushes of poly(methacrylic acid) (PMAA) were grafted from silicon surfaces using controlled surface-initiated atom-transfer radical polymerization (SI-ATRP). The growth kinetics of PMAA was investigated with respect to the composition of the ATRP medium by grafting the polymer in mixtures of water and methanol with different ratios. The dissociation behavior of the polymer layers was characterized by FTIR titration after incubating the polymer-grafted substrates in PBS buffer solutions with different pH values. PMAA layers show a strong pH-dependent behavior with an effective pK(a) of the bulk polymer brush of 6.5 ± 0.2, which is independent of the polymer brush thickness and methanol content of the ATRP grafting medium. The pH-induced swelling and collapse of the grafted polymer layers were quantified in real time by in situ ellipsometry in liquid environment. Switching between polymer conformations at pH values of 4 and 8 is rapid and reversible, and it is characterized by swelling factors (maximum thickness/minimum thickness) that increase with decreasing the methanol content of the SI-ATRP medium.


Asunto(s)
Ácidos Polimetacrílicos/química , Absorción , Técnicas Biosensibles , Radicales Libres/química , Concentración de Iones de Hidrógeno , Cinética , Espectroscopía de Fotoelectrones , Polimerizacion , Silicio/química , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA