Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Oncologist ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38815166

RESUMEN

The prognosis of patients with glioblastoma (GBM) remains poor despite current treatments. Targeted therapy in GBM has been the subject of intense investigation but has not been successful in clinical trials. The reasons for the failure of targeted therapy in GBM are multifold and include a lack of patient selection in trials, the failure to identify driver mutations, and poor blood-brain barrier penetration of investigational drugs. Here, we describe a case of a durable complete response in a newly diagnosed patient with GBM with leptomeningeal dissemination and PTPRZ1-MET fusion who was treated with tepotinib, a brain-penetrant MET inhibitor. This case of successful targeted therapy in a patient with GBM demonstrates that early molecular testing, identification of driver molecular alterations, and treatment with brain-penetrant small molecule inhibitors have the potential to change the outcome in select patients with GBM.

3.
Neuro Oncol ; 26(8): 1367-1387, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38770568

RESUMEN

DNA damage response (DDR) mechanisms are critical to maintenance of overall genomic stability, and their dysfunction can contribute to oncogenesis. Significant advances in our understanding of DDR pathways have raised the possibility of developing therapies that exploit these processes. In this expert-driven consensus review, we examine mechanisms of response to DNA damage, progress in development of DDR inhibitors in IDH-wild-type glioblastoma and IDH-mutant gliomas, and other important considerations such as biomarker development, preclinical models, combination therapies, mechanisms of resistance and clinical trial design considerations.


Asunto(s)
Neoplasias Encefálicas , Daño del ADN , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patología , Investigación Biomédica Traslacional , Animales , Reparación del ADN , Glioma/genética , Glioma/terapia , Glioma/patología , Consenso , Mutación
4.
Neurooncol Adv ; 5(1): vdad132, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38130900

RESUMEN

Background: Epidermal growth factor receptor (EGFR) amplification is found in nearly 40%-50% of glioblastoma cases. Several EGFR inhibitors have been tested in glioblastoma but have failed to demonstrate long-term therapeutic benefit, presumably because of acquired resistance. Targeting EGFR downstream signaling with mitogen-activated protein kinase kinase 1 and 2 (MEK1/2) inhibitors would be a more effective approach to glioblastoma treatment. We tested the therapeutic potential of MEK1/2 inhibitors in glioblastoma using 3D cultures of glioma stem-like cells (GSCs) and mouse models of glioblastoma. Methods: Several MEK inhibitors were screened in an unbiased high-throughput platform using GSCs. Cell death was evaluated using flow cytometry and Western blotting (WB) analysis. RNA-seq, real-time quantitative polymerase chain reaction, immunofluorescence, and WB analysis were used to identify and validate neuronal differentiation. Results: Unbiased screening of multiple MEK inhibitors in GSCs showed antiproliferative and apoptotic cell death in sensitive cell lines. An RNA-seq analysis of cells treated with trametinib, a potent MEK inhibitor, revealed upregulation of neurogenesis and neuronal differentiation genes, such as achaete-scute homolog 1 (ASCL1), delta-like 3 (DLL3), and neurogenic differentiation 4 (NeuroD4). We validated the neuronal differentiation phenotypes in vitro and in vivo using selected differentiation markers (ß-III-tubulin, ASCL1, DLL3, and NeuroD4). Oral treatment with trametinib in an orthotopic GSC xenograft model significantly improved animal survival, with 25%-30% of mice being long-term survivors. Conclusions: Our findings demonstrated that MEK1/2 inhibition promotes neuronal differentiation in glioblastoma, a potential additional mechanism of action of MEK1/2 inhibitors. Thus, MEK inhibitors could be efficacious in glioblastoma patients with activated EGFR/MAPK signaling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA