Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 13: 910594, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35968143

RESUMEN

Pathogens produce effector proteins to manipulate their hosts. While most effectors act autonomously, some fungal effectors act in pairs and rely on each other for function. During the colonization of the plant vasculature, the root-infecting fungus Fusarium oxysporum (Fo) produces 14 so-called Secreted in Xylem (SIX) effectors. Two of these effector genes, Avr2 (Six3) and Six5, form a gene pair on the pathogenicity chromosome of the tomato-infecting Fo strain. Avr2 has been shown to suppress plant defense responses and is required for full pathogenicity. Although Six5 and Avr2 together manipulate the size exclusion limit of plasmodesmata to facilitate cell-to-cell movement of Avr2, it is unclear whether Six5 has additional functions as well. To investigate the role of Six5, we generated transgenic Arabidopsis lines expressing Six5. Notably, increased susceptibility during the early stages of infection was observed in these Six5 lines, but only to Fo strains expressing Avr2 and not to wild-type Arabidopsis-infecting Fo strains lacking this effector gene. Furthermore, neither PAMP-triggered defense responses, such as ROS accumulation and callose deposition upon treatment with Flg22, necrosis and ethylene-inducing peptide 1-like protein (NLP), or chitosan, nor susceptibility to other plant pathogens, such as the bacterium Pseudomonas syringae or the fungus Verticilium dahlia, were affected by Six5 expression. Further investigation of the ability of the Avr2/Six5 effector pair to manipulate plasmodesmata (PD) revealed that it not only permits cell-to-cell movement of Avr2, but also facilitates the movement of two additional effectors, Six6 and Six8. Moreover, although Avr2/Six5 expands the size exclusion limit of plasmodesmata (i.e., gating) to permit the movement of a 2xFP fusion protein (53 kDa), a larger variant, 3xFP protein (80 kDa), did not move to the neighboring cells. The PD manipulation mechanism employed by Avr2/Six5 did not involve alteration of callose homeostasis in these structures. In conclusion, the primary function of Six5 appears to function together with Avr2 to increase the size exclusion limit of plasmodesmata by an unknown mechanism to facilitate cell-to-cell movement of Fo effectors.

2.
Mol Plant Pathol ; 22(2): 204-215, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33205901

RESUMEN

Fusarium oxysporum (Fo) is best known as a host-specific vascular pathogen causing major crop losses. Most Fo strains, however, are root endophytes potentially conferring endophyte-mediated resistance (EMR). EMR is a mechanistically poorly understood root-specific induced resistance response induced by endophytic or nonhost pathogenic Fo strains. Like other types of induced immunity, such as systemic acquired resistance or induced systemic resistance, EMR has been proposed to rely on the activation of the pattern-triggered immunity (PTI) system of the plant. PTI is activated upon recognition of conserved microbe-associated molecular patterns (MAMPs) of invading microbes. Here, we investigated the role of PTI in controlling host colonization by Fo endophytes and their ability to induce EMR to the tomato pathogen Fo f. sp. lycopersici (Fol). Transgenic tomato and Arabidopsis plants expressing the Fo effector gene Avr2 are hypersusceptible to bacterial and fungal infection. Here we show that these plants are PTI-compromised and are nonresponsive to bacterial- (flg22) and fungal- (chitosan) MAMPs. We challenged the PTI-compromised tomato mutants with the EMR-conferring Fo endophyte Fo47, the nonhost pathogen Fom (a melon pathogen), and with Fol. Compared to wild-type plants, Avr2-tomato plants became hypercolonized by Fo47 and Fom. Surprisingly, however, EMR towards Fol, induced by either Fo47 or Fom, was unaffected in these plants. These data show that EMR-based disease resistance is independent from the conventional defence pathways triggered by PTI, but that PTI is involved in restricting host colonization by nonpathogenic Fo isolates.


Asunto(s)
Endófitos/inmunología , Fusarium/inmunología , Solanum lycopersicum/inmunología , Solanum lycopersicum/microbiología , Arabidopsis/inmunología , Arabidopsis/microbiología , Resistencia a la Enfermedad/inmunología , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA