Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
J Extracell Vesicles ; 13(1): e12389, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38191764

RESUMEN

The loss-of-function of the proprotein convertase subtilisin-kexin type 9 (Pcsk9) gene has been associated with significant reductions in plasma serum low-density lipoprotein cholesterol (LDL-C) levels. Both CRISPR/Cas9 and CRISPR-based editor-mediated Pcsk9 inactivation have successfully lowered plasma LDL-C and PCSK9 levels in preclinical models. Despite the promising preclinical results, these studies did not report how vehicle-mediated CRISPR delivery inactivating Pcsk9 affected low-density lipoprotein receptor recycling in vitro or ex vivo. Extracellular vesicles (EVs) have shown promise as a biocompatible delivery vehicle, and CRISPR/Cas9 ribonucleoprotein (RNP) has been demonstrated to mediate safe genome editing. Therefore, we investigated EV-mediated RNP targeting of the Pcsk9 gene ex vivo in primary mouse hepatocytes. We engineered EVs with the rapamycin-interacting heterodimer FK506-binding protein (FKBP12) to contain its binding partner, the T82L mutant FKBP12-rapamycin binding (FRB) domain, fused to the Cas9 protein. By integrating the vesicular stomatitis virus glycoprotein on the EV membrane, the engineered Cas9 EVs were used for intracellular CRISPR/Cas9 RNP delivery, achieving genome editing with an efficacy of ±28.1% in Cas9 stoplight reporter cells. Administration of Cas9 EVs in mouse hepatocytes successfully inactivated the Pcsk9 gene, leading to a reduction in Pcsk9 mRNA and increased uptake of the low-density lipoprotein receptor and LDL-C. These readouts can be used in future experiments to assess the efficacy of vehicle-mediated delivery of genome editing technologies targeting Pcsk9. The ex vivo data could be a step towards reducing animal testing and serve as a precursor to future in vivo studies for EV-mediated CRISPR/Cas9 RNP delivery targeting Pcsk9.


Asunto(s)
Vesículas Extracelulares , Animales , Ratones , LDL-Colesterol , Sistemas CRISPR-Cas , Hepatocitos , Proproteína Convertasa 9/genética , Subtilisinas , Proteína 1A de Unión a Tacrolimus
2.
ASAIO J ; 70(1): 38-43, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37816093

RESUMEN

The aim was to optimize the perfusate composition by including a hemofiltrator to the PhysioHeartplatform for ex situ heart perfusion of porcine slaughterhouse hearts. Fourteen hearts were harvested from Dutch Landrace pigs and slaughtered for human consumption. All hearts were preserved for 4 hours using static cold storage before reperfusion for 4 hours on the PhysioHeart platform. Seven hearts were assigned to the hemofiltration group, where a hemofiltrator was added to the perfusion circuit, while the control group did not receive hemofiltration. In the hemofiltration group, the perfusion fluid was filtrated for 1 hour with a flow of 1 L/hour before reperfusion. After mounting the heart, hemofiltration was maintained at 1 L/hour, and cardiac function and blood samples were analyzed at multiple time points. Preserved cardiac function was defined as a cardiac output >3.0 L/min with a mean aortic pressure >60 mm Hg and a left atrial pressure <15 mm Hg. Hemofiltration resulted in a significantly reduced potassium concentration at all time points ( p < 0.001), while sodium levels remained at baseline values ( p < 0.004). Furthermore, creatinine and ammonia levels decreased over time. Functional assessment demonstrated a reduced left atrial pressure ( p < 0.04) and a reduction of the required dobutamine dose to support myocardial function ( p < 0.003) in the hemofiltration group. Preserved cardiac function did not differ between groups. Hemofiltration results in an improved biochemical composition of the whole blood perfusate and preserves cardiac function better during normothermic perfusion based on a reduced left atrial pressure (LAP) and dobutamine requirement to support function.


Asunto(s)
Trasplante de Corazón , Hemofiltración , Humanos , Porcinos , Animales , Dobutamina , Corazón , Perfusión/métodos , Miocardio , Preservación de Órganos/métodos
3.
Atheroscler Plus ; 52: 32-40, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37389152

RESUMEN

Background and aims: Patients who underwent carotid endarterectomy (CEA) still have a residual risk of 13% of developing a major adverse cardiovascular event (MACE) within 3 years. Inflammatory processes leading up to MACE are not fully understood. Therefore, we examined blood cell characteristics (BCCs), possibly reflecting inflammatory processes, in relation to MACE to identify BCCs that may contribute to an increased risk. Methods: We analyzed 75 pretreatment BCCs from the Sapphire analyzer, and clinical data from the Athero-Express biobank in relation to MACE after CEA using Random Survival Forests, and a Generalized Additive Survival Model. To understand biological mechanisms, we related the identified variables to intraplaque hemorrhage (IPH). Results: Of 783 patients, 97 (12%) developed MACE within 3 years after CEA. Red blood cell distribution width (RDW) (HR 1.23 [1.02, 1.68], p = 0.022), CV of lymphocyte size (LACV) (HR 0.78 [0.63, 0.99], p = 0.043), neutrophil complexity of the intracellular structure (NIMN) (HR 0.80 [0.64, 0.98], p = 0.033), mean neutrophil size (NAMN) (HR 0.67 [0.55, 0.83], p < 0.001), mean corpuscular volume (MCV) (HR 1.35 [1.09, 1.66], p = 0.005), eGFR (HR 0.65 [0.52, 0.80], p < 0.001); and HDL-cholesterol (HR 0.62 [0.45, 0.85], p = 0.003) were related to MACE. NAMN was related to IPH (OR 0.83 [0.71-0.98], p = 0.02). Conclusions: This is the first study to present a higher RDW and MCV and lower LACV, NIMN and NAMN as biomarkers reflecting inflammatory processes that may contribute to an increased risk of MACE after CEA.

4.
ASAIO J ; 69(8): 774-781, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37146423

RESUMEN

The aim of our study was to explore the effect of cold oxygenated machine perfusion in slaughterhouse porcine hearts on functional myocardial survival compared to static cold storage (SCS). Seventeen hearts were harvested from Dutch Landrace Hybrid pigs, which were sacrificed for human consumption and randomly assigned to the 4 hours SCS group (N = 10) or the 4 hours cold oxygenated machine perfusion group (N = 7). Hearts were perfused with a homemade Heart Solution with a perfusion pressure of 20-25 mm Hg to achieve a coronary flow between 100 and 200 ml/minute. After 4 hours of preservation, all hearts were functionally assessed during 4 hours on a normothermic, oxygenated diluted whole blood (1:2) loaded heart model. Survival was defined by a cardiac output above 3 L with a mean aortic pressure above 60 mm Hg. Survival was significantly better in the cold oxygenated machine perfusion group, where 100% of the hearts reached the 4 hours end-point, as compared with 30% in the SCS group ( p = 0.006). Interestingly, warm ischemic time was inversely related to survival in the SCS group with a correlation coefficient of -0.754 ( p = 0.012). Cold oxygenated machine perfusion improves survival of the slaughterhouse porcine heart.


Asunto(s)
Trasplante de Corazón , Preservación de Órganos , Humanos , Animales , Porcinos , Mataderos , Corazón , Miocardio , Perfusión , Frío
5.
Biomedicines ; 10(12)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36551811

RESUMEN

NLRP3-inflammasome-mediated signaling is thought to significantly contribute to the extent of myocardial damage after myocardial infarction (MI). The purpose of this study was to investigate the effects of the NLRP3-inflammasome inhibitor IZD334 on cardiac damage in a pig model of myocardial infarction. Prior to in vivo testing, in vitro, porcine peripheral blood mononuclear cells and whole blood were treated with increasing dosages of IZD334, a novel NLRP3-inflammasome inhibitor, and were stimulated with lipopolysaccharide (LPS) and adenosine triphosphate (ATP). After determination of the pharmacological profile in healthy pigs, thirty female Landrace pigs were subjected to 75 min of transluminal balloon occlusion of the LAD coronary artery and treated with placebo or IZD334 (1 mg/kg, 3 mg/kg, or 10 mg/kg once daily) in a blinded randomized fashion. In vitro, NLRP3-inflammasome stimulation showed the pronounced release of interleukin (IL)-1ß that was attenuated by IZD334 (p < 0.001). In vivo, no differences were observed between groups in serological markers of inflammation nor myocardial IL-1ß expression. After 7 days, the ejection fraction did not differ between groups, as assessed with MRI (placebo: 45.1 ± 8.7%, 1 mg/kg: 49.9 ± 6.1%, 3 mg/kg: 42.7 ± 3.8%, 10 mg/kg: 44.9 ± 6.4%, p = 0.26). Infarct size as a percentage of the area at risk was not reduced (placebo: 73.1 ± 3.0%, 1 mg/kg: 75.5 ± 7.3%, 3 mg/kg: 80.3 ± 3.9%, 10 mg/kg: 78.2 ± 8.0%, p = 0.21). In this pig MI model, we did not observe attenuation of the inflammatory response after NLRP3-inflammasome inhibition in vivo. Consecutively, no difference was observed in IS and cardiac function, while in vitro inhibition successfully reduced IL-1ß release from stimulated porcine blood cells.

6.
JACC Basic Transl Sci ; 7(8): 844-857, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36061340

RESUMEN

At least one-half of the growing heart failure population consists of heart failure with preserved ejection fraction (HFpEF). The limited therapeutic options, the complexity of the syndrome, and many related comorbidities emphasize the need for adequate experimental animal models to study the etiology of HFpEF, as well as its comorbidities and pathophysiological changes. The strengths and weaknesses of available animal models have been reviewed extensively with the general consensus that a "1-size-fits-all" model does not exist, because no uniform HFpEF patient exists. In fact, HFpEF patients have been categorized into HFpEF phenogroups based on comorbidities and symptoms. In this review, we therefore study which animal model is best suited to study the different phenogroups-to improve model selection and refinement of animal research. Based on the published data, we extrapolated human HFpEF phenogroups into 3 animal phenogroups (containing small and large animals) based on reports and definitions of the authors: animal models with high (cardiac) age (phenogroup aging); animal models focusing on hypertension and kidney dysfunction (phenogroup hypertension/kidney failure); and models with hypertension, obesity, and type 2 diabetes mellitus (phenogroup cardiometabolic syndrome). We subsequently evaluated characteristics of HFpEF, such as left ventricular diastolic dysfunction parameters, systemic inflammation, cardiac fibrosis, and sex-specificity in the different models. Finally, we scored these parameters concluded how to best apply these models. Based on our findings, we propose an easy-to-use classification for future animal research based on clinical phenogroups of interest.

7.
Front Pharmacol ; 13: 869512, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35694249

RESUMEN

Circadian rhythms influence the recruitment of immune cells and the onset of inflammation, which is pivotal in the response to ischemic cardiac injury after a myocardial infarction (MI). The hyperacute immune response that occurs within the first few hours after a MI has not yet been elucidated. Therefore, we characterized the immune response and myocardial damage 3 hours after a MI occurs over a full twenty-four-hour period to investigate the role of the circadian rhythms in this response. MI was induced at Zeitgeber Time (ZT) 2, 8, 14, and 20 by permanent ligation of the left anterior descending coronary artery. Three hours after surgery, animals were terminated and blood and hearts collected to assess the immunological status and cardiac damage. Blood leukocyte numbers varied throughout the day, peaking during the rest-phase (ZT2 and 8). Extravasation of leukocytes was more pronounced during the active-phase (ZT14 and 20) and was associated with greater chemokine release to the blood and expression of adhesion molecules in the heart. Damage to the heart, measured by Troponin-I plasma levels, was elevated during this time frame. Clock gene oscillations remained intact in both MI-induced and sham-operated mice hearts, which could explain the circadian influence of the hyperacute inflammatory response after a MI. These findings are in line with the clinical observation that patients who experience a MI early in the morning (i.e., early active phase) have worse clinical outcomes. This study provides further insight on the immune response occurring shortly after an MI, which may contribute to the development of novel and optimization of current therapeutic approaches.

8.
J Control Release ; 343: 207-216, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35077739

RESUMEN

Lipid Nanoparticles (LNPs) are a promising drug delivery vehicle for clinical siRNA delivery. Modified mRNA (modRNA) has recently gained great attention as a therapeutic molecule in cardiac regeneration. However, for mRNA to be functional, it must first reach the diseased myocardium, enter the target cell, escape from the endosomal compartment into the cytosol and be translated into a functional protein. However, it is unknown if LNPs can effectively deliver mRNA, which is much larger than siRNA, to the ischemic myocardium. Here, we evaluated the ability of LNPs to deliver mRNA to the myocardium upon ischemia-reperfusion injury functionally. By exploring the bio-distribution of fluorescently labeled LNPs, we observed that, upon reperfusion, LNPs accumulated in the infarct area of the heart. Subsequently, the functional delivery of modRNA was evaluated by the administration of firefly luciferase encoding modRNA. Concomitantly, a significant increase in firefly luciferase expression was observed in the heart upon myocardial reperfusion when compared to sham-operated animals. To characterize the targeted cells within the myocardium, we injected LNPs loaded with Cre modRNA into Cre-reporter mice. Upon LNP infusion, Tdtomato+ cells, derived from Cre mediated recombination, were observed in the infarct region as well as the epicardial layer upon LNP infusion. Within the infarct area, most targeted cells were cardiac fibroblasts but also some cardiomyocytes and macrophages were found. Although the expression levels were low compared to LNP-modRNA delivery into the liver, our data show the ability of LNPs to functionally deliver modRNA therapeutics to the damaged myocardium, which holds great promise for modRNA-based cardiac therapies.


Asunto(s)
Luciferasas de Luciérnaga , Nanopartículas , Animales , Infarto , Liposomas , Ratones , Miocardio , ARN Mensajero , ARN Interferente Pequeño/genética
9.
Cell Rep ; 38(1): 110189, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34986347

RESUMEN

Fibrosis is a major cause of mortality worldwide, characterized by myofibroblast activation and excessive extracellular matrix deposition. Systemic sclerosis is a prototypic fibrotic disease in which CXCL4 is increased and strongly correlates with skin and lung fibrosis. Here we aim to elucidate the role of CXCL4 in fibrosis development. CXCL4 levels are increased in multiple inflammatory and fibrotic mouse models, and, using CXCL4-deficient mice, we demonstrate the essential role of CXCL4 in promoting fibrotic events in the skin, lungs, and heart. Overexpressing human CXCL4 in mice aggravates, whereas blocking CXCL4 reduces, bleomycin-induced fibrosis. Single-cell ligand-receptor analysis predicts CXCL4 to affect endothelial cells and fibroblasts. In vitro, we confirm that CXCL4 directly induces myofibroblast differentiation and collagen synthesis in different precursor cells, including endothelial cells, by stimulating endothelial-to-mesenchymal transition. Our findings identify a pivotal role of CXCL4 in fibrosis, further substantiating the potential role of neutralizing CXCL4 as a therapeutic strategy.


Asunto(s)
Matriz Extracelular/patología , Miofibroblastos/metabolismo , Factor Plaquetario 4/metabolismo , Fibrosis Pulmonar/patología , Esclerodermia Sistémica/patología , Animales , Bleomicina/toxicidad , Línea Celular , Colágeno/biosíntesis , Modelos Animales de Enfermedad , Células Endoteliales/citología , Células Endoteliales/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Pulmón/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Miofibroblastos/citología , Pericitos/metabolismo , Factor Plaquetario 4/genética , Células del Estroma/citología , Células del Estroma/metabolismo
10.
Cardiovasc Res ; 118(14): 2973-2984, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34849611

RESUMEN

AIMS: Microvascular inflammation plays an important role in the pathogenesis of diastolic dysfunction (DD) and metabolic heart disease. NOX1 is expressed in vascular and immune cells and has been implicated in the vascular pathology of metabolic disease. However, its contribution to metabolic heart disease is less understood. METHODS AND RESULTS: NOX1-deficient mice (KO) and male wild-type (WT) littermates were fed a high-fat high-sucrose diet (HFHS) and injected streptozotocin (75 mg/kg i.p.) or control diet (CTD) and sodium citrate. Despite similar weight gain and increase in fasting blood glucose and insulin, only WT-HFHS but not KO-HFHS mice developed concentric cardiac hypertrophy and elevated left ventricular filling pressure. This was associated with increased endothelial adhesion molecule expression, accumulation of Mac-2-, IL-1ß-, and NLRP3-positive cells and nitrosative stress in WT-HFHS but not KO-HFHS hearts. Nox1 mRNA was solidly expressed in CD45+ immune cells isolated from healthy mouse hearts but was negligible in cardiac CD31+ endothelial cells. However, in vitro, Nox1 expression increased in response to lipopolysaccharide (LPS) in endothelial cells and contributed to LPS-induced upregulation of Icam-1. Nox1 was also upregulated in mouse bone marrow-derived macrophages in response to LPS. In peripheral monocytes from age- and sex-matched symptomatic patients with and without DD, NOX1 was significantly higher in patients with DD compared to those without DD. CONCLUSIONS: NOX1 mediates endothelial activation and contributes to myocardial inflammation and remodelling in metabolic disease in mice. Given its high expression in monocytes of humans with DD, NOX1 may represent a potential target to mitigate heart disease associated with DD.


Asunto(s)
Cardiopatías , Enfermedades Metabólicas , Humanos , Ratones , Masculino , Animales , Monocitos , Lipopolisacáridos , Células Endoteliales , Inflamación , Ratones Endogámicos C57BL , Ratones Noqueados
11.
Biology (Basel) ; 12(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36671753

RESUMEN

Cardiac allograft vasculopathy (CAV) and antibody-mediated rejection are immune-mediated, long-term complications that jeopardize graft survival after heart transplantation (HTx). Interestingly, increased plasma levels of immunoglobulins have been found in end-stage heart failure (HF) patients prior to HTx. In this study, we aimed to determine whether increased circulating immunoglobulin levels prior to transplantation are associated with poor post-HTx survival. Pre-and post-HTx plasma samples of 36 cardiac transplant recipient patients were used to determine circulating immunoglobulin levels. In addition, epicardial tissue was collected to determine immunoglobulin deposition in cardiac tissue and assess signs and severity of graft rejection. High levels of IgG1 and IgG2 prior to HTx were associated with a shorter survival post-HTx. Immunoglobulin deposition in cardiac tissue was significantly elevated in patients with a survival of less than 3 years. Patients with high plasma IgG levels pre-HTx also had significantly higher plasma levels after HTx. Furthermore, high pre-HTX levels of IgG1 and IgG2 levels were also significantly increased in patients with inflammatory infiltrate in CAV lesions. Altogether the results of this proof-of-concept study suggest that an activated immune response prior to transplantation negatively affects graft survival.

12.
Int J Mol Sci ; 22(15)2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34360595

RESUMEN

After myocardial infarction (MI), a strong inflammatory response takes place in the heart to remove the dead tissue resulting from ischemic injury. A growing body of evidence suggests that timely resolution of this inflammatory process may aid in the prevention of adverse cardiac remodeling and heart failure post-MI. The present challenge is to find a way to stimulate this process without interfering with the reparative role of the immune system. Extracellular vesicles (EVs) are natural membrane particles that are released by cells and carry different macromolecules, including proteins and non-coding RNAs. In recent years, EVs derived from various stem and progenitor cells have been demonstrated to possess regenerative properties. They can provide cardioprotection via several mechanisms of action, including immunomodulation. In this review, we summarize the role of the innate immune system in post-MI healing. We then discuss the mechanisms by which EVs modulate cardiac inflammation in preclinical models of myocardial injury through regulation of monocyte influx and macrophage function. Finally, we provide suggestions for further optimization of EV-based therapy to improve its potential for the treatment of MI.


Asunto(s)
Cardiotónicos/administración & dosificación , Vesículas Extracelulares/trasplante , Inflamación/terapia , Infarto del Miocardio/complicaciones , Células Madre/citología , Animales , Humanos , Inflamación/etiología , Inflamación/patología
13.
Front Pharmacol ; 12: 702326, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34381364

RESUMEN

Background: Ischemia-reperfusion and cardiac remodeling is associated with cardiomyocyte death, excessive fibrosis formation, and functional decline, eventually resulting in heart failure (HF). Glucagon-like peptide (GLP)-1 agonists are reported to reduce apoptosis and myocardial infarct size after ischemia-reperfusion. Moreover, mineralocorticoid receptor antagonists (MRAs) have been described to reduce reactive fibrosis and improve cardiac function. Here, we investigated whether combined treatment with GLP-1R agonist exenatide and MRA potassium canrenoate could minimize cardiac injury and limit HF progression in animal models of chronic HF. Methods and Results: Forty female Topigs Norsvin pigs were subjected to 150 min balloon occlusion of the left anterior descending artery (LAD). Prior to reperfusion, pigs were randomly assigned to placebo or combination therapy (either low dose or high dose). Treatment was applied for two consecutive days or for 8 weeks with a continued high dose via a tunneled intravenous catheter. Using 2,3,5-Triphenyltetrazolium chloride (TTC) staining we observed that combination therapy did not affect the scar size after 8 weeks. In line, left ventricular volume and function assessed by three-dimensional (3D) echocardiography (baseline, 7 days and 8 weeks), and cardiac magnetic resonance imaging (CMR, 8 weeks) did not differ between experimental groups. In addition, 36 C57Bl/6JRj mice underwent permanent LAD-occlusion and were treated with either placebo or combination therapy prior to reperfusion, for two consecutive days via intravenous injection, followed by continued treatment via placement of osmotic mini-pumps for 28 days. Global cardiac function, assessed by 3D echocardiography performed at baseline, 7, 14, and 28 days, did not differ between treatment groups. Also, no differences were observed in cardiac hypertrophy, assessed by heart weight/bodyweight and heart weight/tibia length ratio. Conclusion: In the current study, combined treatment with GLP-1R agonist exenatide and MR antagonist potassium canrenoate did not show beneficial effects on cardiac remodeling nor resulted in functional improvement in a small and large animal chronic HF model.

14.
Front Pharmacol ; 12: 614656, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34211391

RESUMEN

Cardiorenal syndrome type 2 is characterized by kidney failure as a consequence of heart failure that affects >50% of heart failure patients. Murine transverse aortic constriction (TAC) is a heart failure model, where pressure overload is induced on the heart without any systemic hypertension or its consequences. Whether renal function is altered in this model is debated, and if so, at which time post-TAC renal dysfunction starts to contribute to worsening of cardiac function. We therefore studied the effects of progressive heart failure development on kidney function in the absence of chronically elevated systemic blood pressure and renal perfusion pressure. C57BL/6J mice (N = 129) were exposed to TAC using a minimally invasive technique and followed from 3 to 70 days post-TAC. Cardiac function was determined with 3D ultrasound and showed a gradual decrease in stroke volume over time. Renal renin expression and plasma renin concentration increased with progressive heart failure, suggesting hypoperfusion of the kidney. In addition, plasma urea concentration, a surrogate marker for renal dysfunction, was increased post-TAC. However, no structural abnormalities in the kidney, nor albuminuria were present at any time-point post-TAC. Progressive heart failure is associated with increased renin expression, but only mildly affected renal function without inducing structural injury. In combination, these data suggest that heart failure alone does not contribute to kidney dysfunction in mice.

18.
J Cardiovasc Transl Res ; 14(1): 63-74, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32444946

RESUMEN

The heart failure (HF) epidemic is growing and approximately half of the HF patients have heart failure with preserved ejection fraction (HFpEF). HFpEF is a heterogeneous syndrome, characterized by a preserved left ventricular ejection fraction (LVEF ≥ 50%) with diastolic dysfunction, and is associated with high morbidity and mortality. Underlying comorbidities of HFpEF, i.e., hypertension, type 2 diabetes mellitus, obesity, and renal failure, lead to a systemic pro-inflammatory state, thereby affecting normal cardiac function. Increased inflammatory biomarkers predict incident HFpEF and are higher in patients with HFpEF as compared with heart failure with reduced ejection fraction (HFrEF). Randomized trials in HFpEF patients using traditional HF medication failed to demonstrate a clear benefit on hard endpoints (mortality and/or HF hospitalization). Therefore, therapies targeting underlying comorbidities and systemic inflammation in early HFpEF may provide better opportunities. Here, we provide an overview of the current state and future perspectives of immunomodulatory therapies for HFpEF.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Insuficiencia Cardíaca/terapia , Inmunidad Celular , Inmunomodulación/inmunología , Volumen Sistólico/fisiología , Función Ventricular Izquierda/fisiología , Insuficiencia Cardíaca/inmunología , Insuficiencia Cardíaca/fisiopatología , Humanos , Pronóstico
19.
J Cardiovasc Transl Res ; 14(1): 88-99, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32476086

RESUMEN

Various cell-based therapies are currently investigated in an attempt to tackle the high morbidity and mortality associated with heart failure. The need for these therapies to move towards the clinic is pressing. Therefore, preclinical large animal studies that use non-autologous cells are needed to evaluate their potential. However, non-autologous cells are highly immunogenic and trigger immune rejection responses resulting in potential loss of efficacy. To overcome this issue, adequate immunosuppressive regimens are of imminent importance but clear guidelines are currently lacking. In this review, we assess the immunological barriers regarding non-autologous cell transplantation and immune modulation with immunosuppressive drugs. In addition, we provide recommendations with respect to immunosuppressive regimens in preclinical cardiac cell-replacement studies.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Rechazo de Injerto/prevención & control , Trasplante de Corazón/métodos , Inmunosupresores/uso terapéutico , Animales , Modelos Animales de Enfermedad , Rechazo de Injerto/inmunología , Insuficiencia Cardíaca/cirugía , Humanos , Insuficiencia del Tratamiento
20.
Heart Fail Rev ; 26(6): 1515-1524, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-32335789

RESUMEN

The transverse aortic constriction (TAC) model is frequently used to study adverse cardiac remodeling upon pressure overload. We set out to define the most important characteristics that define the degree of cardiac remodeling in this model. A systematic review and meta-analyses were performed on studies using the TAC mouse/rat model and reporting echocardiographic outcome parameters. We included all animal studies in which a constriction around the transverse aorta and at least one of the predefined echocardiography or MRI outcome parameters were assessed. A total of 502 articles and > 3000 wild-type, untreated animals undergoing TAC were included in this study and referenced to a control group. The duration of aortic constriction correlated to the degree of adverse remodeling. However, the mouse data is strongly biased by the preferential use of male C57Bl/6 mice (66% of studies). Furthermore, mostly ketamine/xylazine anesthetics, 27G needle constriction, and silk sutures are used. Nonetheless, despite the homogeneity in experimental design, the model contained a substantial degree of heterogeneity in the functional outcome measures. When looking at study quality, only 12% reported randomization, 23% mentioned any sort of blinding, 25% adequately addressed the outcomes, and an amazingly low percentage (2%) showed sample size calculation. Meta-analyses did not detect specific study characteristics that explained the heterogeneity in the reported outcome measures, however this might be related to the strong bias towards the use of specific mouse lines, sex as well as age or to poor reporting of characteristics of study quality.


Asunto(s)
Aorta , Insuficiencia Cardíaca , Animales , Constricción , Ecocardiografía , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...