Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(4): e0301824, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38578745

RESUMEN

Biliary atresia is a neonatal disease characterized by damage, inflammation, and fibrosis of the liver and bile ducts and by abnormal bile metabolism. It likely results from a prenatal environmental exposure that spares the mother and affects the fetus. Our aim was to develop a model of fetal injury by exposing pregnant mice to low-dose biliatresone, a plant toxin implicated in biliary atresia in livestock, and then to determine whether there was a hepatobiliary phenotype in their pups. Pregnant mice were treated orally with 15 mg/kg/d biliatresone for 2 days. Histology of the liver and bile ducts, serum bile acids, and liver immune cells of pups from treated mothers were analyzed at P5 and P21. Pups had no evidence of histological liver or bile duct injury or fibrosis at either timepoint. In addition, growth was normal. However, serum levels of glycocholic acid were elevated at P5, suggesting altered bile metabolism, and the serum bile acid profile became increasingly abnormal through P21, with enhanced glycine conjugation of bile acids. There was also immune cell activation observed in the liver at P21. These results suggest that prenatal exposure to low doses of an environmental toxin can cause subclinical disease including liver inflammation and aberrant bile metabolism even in the absence of histological changes. This finding suggests a wide potential spectrum of disease after fetal biliary injury.


Asunto(s)
Benzodioxoles , Atresia Biliar , Enfermedades de la Vesícula Biliar , Embarazo , Femenino , Animales , Ratones , Atresia Biliar/metabolismo , Hígado/metabolismo , Conductos Biliares/patología , Enfermedades de la Vesícula Biliar/complicaciones , Inflamación/patología , Fibrosis , Ácidos y Sales Biliares
3.
Cardiol Young ; : 1-8, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38105562

RESUMEN

BACKGROUND: Cholestasis characterised by conjugated hyperbilirubinemia is a marker of hepatobiliary dysfunction following neonatal cardiac surgery. We aimed to characterise the incidence of conjugated hyperbilirubinemia following neonatal heart surgery and examine the effect of conjugated hyperbilirubinemia on post-operative morbidity and mortality. METHODS: This was a retrospective study of all neonates who underwent surgery for congenital heart disease (CHD) at our institution between 1/1/2010 and 12/31/2020. Patient- and surgery-specific data were abstracted from local registry data and review of the medical record. Conjugated hyperbilirubinemia was defined as perioperative maximum conjugated bilirubin level > 1 mg/dL. The primary outcome was in-hospital mortality. Survival analysis was conducted using the Kaplan-Meier survival function. RESULTS: Conjugated hyperbilirubinemia occurred in 8.5% of patients during the study period. Neonates with conjugated hyperbilirubinemia were more likely to be of younger gestational age, lower birth weight, and non-Caucasian race (all p < 0.001). Patients with conjugated hyperbilirubinemia were more likely to have chromosomal and non-cardiac anomalies and require ECMO pre-operatively. In-hospital mortality among patients with conjugated hyperbilirubinemia was increased compared to those without (odds ratio 5.4). Post-operative complications including mechanical circulatory support, reoperation, prolonged ventilator dependence, and multi-system organ failure were more common with conjugated hyperbilirubinemia (all p < 0.04). Patients with higher levels of conjugated bilirubin had worst intermediate-term survival, with patients in the highest conjugated bilirubin group (>10 mg/dL) having a 1-year survival of only 6%. CONCLUSIONS: Conjugated hyperbilirubinemia is associated with post-operative complications and worse survival following neonatal heart surgery. Cholestasis is more common in patients with chromosomal abnormalities and non-cardiac anomalies, but the underlying mechanisms have not been delineated.

4.
Nat Commun ; 14(1): 7880, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38036513

RESUMEN

Normothermic machine perfusion (NMP) after static cold storage is increasingly used for preservation and assessment of human donor livers prior to transplantation. Biliary viability assessment during NMP reduces the risk of post-transplant biliary complications. However, understanding of molecular changes in the biliary system during NMP remains incomplete. We performed an in-depth, unbiased proteomics analysis of bile collected during sequential hypothermic machine perfusion, rewarming and NMP of 55 human donor livers. Longitudinal analysis during NMP reveals proteins reflective of cellular damage at early stages, followed by upregulation of secretory and immune response processes. Livers with bile chemistry acceptable for transplantation reveal protein patterns implicated in regenerative processes, including cellular proliferation, compared to livers with inadequate bile chemistry. These findings are reinforced by detection of regenerative gene transcripts in liver tissue before machine perfusion. Our comprehensive bile proteomics and liver transcriptomics data sets provide the potential to further evaluate molecular mechanisms during NMP and refine viability assessment criteria.


Asunto(s)
Sistema Biliar , Trasplante de Hígado , Humanos , Bilis/metabolismo , Proteoma/metabolismo , Donadores Vivos , Hígado , Perfusión
5.
Biofabrication ; 16(1)2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37820623

RESUMEN

Exploring the pathogenesis of and developing therapies for cholestatic liver diseases such as primary sclerosing cholangitis (PSC) remains challenging, partly due to a paucity ofin vitromodels that capture the complex environments contributing to disease progression and partly due to difficulty in obtaining cholangiocytes. Here we report the development of a human vascularized bile duct-on-a-chip (VBDOC) that uses cholangiocyte organoids derived from normal bile duct tissue and human vascular endothelial cells to model bile ducts and blood vessels structurally and functionally in three dimensions. Cholangiocytes in the duct polarized, formed mature tight junctions and had permeability properties comparable to those measured inex vivosystems. The flow of blood and bile was modeled by perfusion of the cell-lined channels, and cholangiocytes and endothelial cells displayed differential responses to flow. We also showed that the device can be constructed with biliary organoids from cells isolated from both bile duct tissue and the bile of PSC patients. Cholangiocytes in the duct became more inflammatory under the stimulation of IL-17A, which induced peripheral blood mononuclear cells and differentiated Th17 cells to transmigrate across the vascular channel. In sum, this human VBDOC recapitulated the vascular-biliary interface structurally and functionally and represents a novel multicellular platform to study inflammatory and fibrotic cholestatic liver diseases.


Asunto(s)
Colangitis Esclerosante , Hepatopatías , Humanos , Células Endoteliales/patología , Leucocitos Mononucleares/patología , Colangitis Esclerosante/patología , Conductos Biliares , Transducción de Señal , Hepatopatías/patología
6.
J Hepatol ; 79(6): 1396-1407, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37611641

RESUMEN

BACKGROUND & AIMS: Biliary atresia (BA) is an obstructive cholangiopathy that initially affects the extrahepatic bile ducts (EHBDs) of neonates. The etiology is uncertain, but evidence points to a prenatal cause. Fetal tissues have increased levels of hyaluronic acid (HA), which plays an integral role in fetal wound healing. The objective of this study was to determine whether a program of fetal wound healing is part of the response to fetal EHBD injury. METHODS: Mouse, rat, sheep, and human EHBD samples were studied at different developmental time points. Models included a fetal sheep model of prenatal hypoxia, human BA EHBD remnants and liver samples taken at the time of the Kasai procedure, EHBDs isolated from neonatal rats and mice, and spheroids and other models generated from primary neonatal mouse cholangiocytes. RESULTS: A wide layer of high molecular weight HA encircling the lumen was characteristic of the normal perinatal but not adult EHBD. This layer, which was surrounded by collagen, expanded in injured ducts in parallel with extensive peribiliary gland hyperplasia, increased mucus production and elevated serum bilirubin levels. BA EHBD remnants similarly showed increased HA centered around ductular structures compared with age-appropriate controls. High molecular weight HA typical of the fetal/neonatal ducts caused increased cholangiocyte spheroid growth, whereas low molecular weight HA induced abnormal epithelial morphology; low molecular weight HA caused matrix swelling in a bile duct-on-a-chip device. CONCLUSION: The fetal/neonatal EHBD, including in human EHBD remnants from Kasai surgeries, demonstrated an injury response with prolonged high levels of HA typical of fetal wound healing. The expanded peri-luminal HA layer may swell and lead to elevated bilirubin levels and obstruction of the EHBD. IMPACT AND IMPLICATIONS: Biliary atresia is a pediatric cholangiopathy associated with high morbidity and mortality rates; although multiple etiologies have been proposed, the fetal response to bile duct damage is largely unknown. This study explores the fetal pathogenesis after extrahepatic bile duct damage, thereby opening a completely new avenue to study therapeutic targets in the context of biliary atresia.


Asunto(s)
Conductos Biliares Extrahepáticos , Atresia Biliar , Humanos , Animales , Ratones , Ratas , Niño , Ovinos , Atresia Biliar/patología , Conductos Biliares Extrahepáticos/patología , Feto/patología , Cicatrización de Heridas , Bilirrubina
7.
Transplantation ; 107(6): e161-e172, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36721302

RESUMEN

BACKGROUND: End-ischemic ex situ normothermic machine perfusion (NMP) enables assessment of donor livers prior to transplantation. The objective of this study was to provide support for bile composition as a marker of biliary viability and to investigate whether bile ducts of high-risk human donor livers already undergo repair during NMP. METHODS: Forty-two livers that were initially declined for transplantation were included in our NMP clinical trial. After NMP, livers were either secondary declined (n = 17) or accepted for transplantation (n = 25) based on the chemical composition of bile and perfusate samples. Bile duct biopsies were taken before and after NMP and assessed using an established histological injury severity scoring system and a comprehensive immunohistochemical assessment focusing on peribiliary glands (PBGs), vascular damage, and regeneration. RESULTS: Bile ducts of livers that were transplanted after viability testing during NMP showed better preservation of PBGs, (micro)vasculature, and increased cholangiocyte proliferation, compared with declined livers. Biliary bicarbonate, glucose, and pH were confirmed as accurate biomarkers of bile duct vitality. In addition, we found evidence of PBG-based progenitor cell differentiation toward mature cholangiocytes during NMP. CONCLUSIONS: Favorable bile chemistry during NMP correlates well with better-preserved biliary microvasculature and PBGs, with a preserved capacity for biliary regeneration. During NMP, biliary tree progenitor cells start to differentiate toward mature cholangiocytes, facilitating restoration of the ischemically damaged surface epithelium.


Asunto(s)
Enfermedades de los Conductos Biliares , Trasplante de Hígado , Humanos , Donadores Vivos , Hígado/patología , Conductos Biliares/metabolismo , Perfusión , Enfermedades de los Conductos Biliares/patología , Preservación de Órganos
8.
Am J Transplant ; 22(6): 1658-1670, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35286759

RESUMEN

Ex situ normothermic machine perfusion (NMP) is increasingly used for viability assessment of high-risk donor livers, whereas dual hypothermic oxygenated machine perfusion (DHOPE) reduces ischemia-reperfusion injury. We aimed to resuscitate and test the viability of initially-discarded, high-risk donor livers using sequential DHOPE and NMP with two different oxygen carriers: an artificial hemoglobin-based oxygen carrier (HBOC) or red blood cells (RBC). In a prospective observational cohort study of 54 livers that underwent DHOPE-NMP, the first 18 procedures were performed with a HBOC-based perfusion solution and the subsequent 36 procedures were performed with an RBC-based perfusion solution for the NMP phase. All but one livers were derived from extended criteria donation after circulatory death donors, with a median donor risk index of 2.84 (IQR 2.52-3.11). After functional assessment during NMP, 34 livers (63% utilization), met the viability criteria and were transplanted. One-year graft and patient survival were 94% and 100%, respectively. Post-transplant cholangiopathy occurred in 1 patient (3%). There were no significant differences in utilization rate and post-transplant outcomes between the HBOC and RBC group. Ex situ machine perfusion using sequential DHOPE-NMP for resuscitation and viability assessment of high-risk donor livers results in excellent transplant outcomes, irrespective of the oxygen carrier used.


Asunto(s)
Trasplante de Hígado , Hemoglobinas , Humanos , Hígado , Trasplante de Hígado/métodos , Donadores Vivos , Preservación de Órganos/métodos , Oxígeno , Perfusión/métodos , Estudios Prospectivos
9.
Hepatology ; 75(4): 814-830, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34543480

RESUMEN

BACKGROUND AND AIMS: Nonanastomotic biliary strictures (NAS) are a major cause of morbidity after orthotopic liver transplantation (OLT). Although ischemic injury of peribiliary glands (PBGs) and peribiliary vascular plexus during OLT has been associated with the later development of NAS, the exact underlying mechanisms remain unclear. We hypothesized that bile ducts of patients with NAS suffer from ongoing biliary hypoxia and lack of regeneration from PBG stem/progenitor cells. APPROACH AND RESULTS: Forty-two patients, requiring retransplantation for either NAS (n = 18), hepatic artery thrombosis (HAT; n = 13), or nonbiliary graft failure (controls; n = 11), were included in this study. Histomorphological analysis of perihilar bile ducts was performed to assess differences in markers of cell proliferation and differentiation in PBGs, microvascular density (MVD), and hypoxia. In addition, isolated human biliary tree stem cells (hBTSCs) were used to examine exo-metabolomics during in vitro differentiation toward mature cholangiocytes. Bile ducts of patients with NAS or HAT had significantly reduced indices of PBG mass, cellular proliferation and differentiation (mucus production, secretin receptor expression, and primary cilia), reduced MVD, and increased PBG apoptosis and hypoxia marker expression, compared to controls. Metabolomics of hBTSCs during in vitro differentiation toward cholangiocytes revealed a switch from a glycolytic to oxidative metabolism, indicating the need for oxygen. CONCLUSIONS: NAS are characterized by a microscopic phenotype of chronic biliary hypoxia attributed to loss of microvasculature, resulting in reduced proliferation and differentiation of PBG stem/progenitor cells into mature cholangiocytes. These findings suggest that persistent biliary hypoxia is a key mechanism underlying the development of NAS after OLT.


Asunto(s)
Sistema Biliar , Colestasis , Trasplante de Hígado , Conductos Biliares , Constricción Patológica/etiología , Humanos , Hipoxia
11.
Transplant Direct ; 7(9): e741, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34386578

RESUMEN

BACKGROUND: Hypothermic oxygenated machine perfusion (HOPE) reduces ischemia-reperfusion injury of donor livers and is increasingly used in clinical transplantation. However, it remains unclear whether perfusion via the portal vein alone (HOPE) or via both the portal vein and hepatic artery (dual HOPE or DHOPE) is superior. METHODS: Twelve porcine livers donated after circulatory death were randomized for 2 h of HOPE (n = 6) or DHOPE (n = 6), followed by 4 h of warm reperfusion with whole blood, to mimic transplantation. Hepatobiliary and endothelial cell function and injury markers were determined in perfusate and bile samples. Biopsies of bile ducts, hepatic arteries, and liver parenchyma were collected to assess histological damage and the expression of endothelial protective genes (KLF-2, eNOS, ET-1, CD31, VWF, VEGF-A). RESULTS: There were no differences in hepatobiliary function and injury after warm reperfusion between the groups, apart from a 2-fold lower concentration of alanine aminotransferase in the perfusate (P = 0.045) and a lower peak lactate dehydrogenase in bile (P = 0.04) of livers preserved by DHOPE. Endothelial cell function and injury, as assessed by perfusate nitric oxide and von Willebrand factor antigen levels, as well as endothelial protective gene expressions, were similar between the groups. The hepatic arteries of both groups showed no microscopic evidence of injury. CONCLUSIONS: This study did not reveal major differences in hepatobiliary or endothelial function and injury after preservation by single or dual HOPE of porcine livers donated after circulatory death.

12.
Front Cell Dev Biol ; 8: 693, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32850815

RESUMEN

INTRODUCTION: Chimerism after orthotopic liver transplantation (OLT) has largely been investigated in intrahepatic cellular constituents. However, little is known about chimerism in the extrahepatic and large intrahepatic bile ducts. Our aim was to evaluate the presence and extent of chimerism after OLT in the peribiliary glands (PBG) and the luminal epithelium of the large donor bile ducts. METHODS: For this study, we examined six extrahepatic and large intrahepatic bile ducts from livers that were re-transplanted. In all cases there was a sex-mismatch between donor and recipient (female donor organ and male recipient), which allowed to discriminate between donor- and recipient-derived cells. Specimens from female to female transplants were used as negative controls and male to male transplants as positive controls. Fluorescence in situ hybridization (FISH) for Y and X chromosomes was performed and the percentage of XY positive cells was determined among biliary epithelial cells. Immunohistochemistry was used to correlate chimerism with histological features. RESULTS: Cholangiocellular chimerism in all studied specimens ranged from 14 to 52%. The degree of chimerism was not associated with biliary damage. Marked chimerism was present at 5 days post-OLT. Ki-67-positivity was detected in 1-8% of the epithelial cells at the time of liver re-transplantation, and this correlated inversely with the degree of chimerism. CONCLUSION: Recipient-derived cholangiocytes are present in the large bile ducts of the donor liver after OLT. The presence of chimerism in the large bile ducts suggests that recipient-derived cells may play a role in biliary regeneration following ischemia-induced injury during OLT.

13.
Case Rep Gastroenterol ; 14(2): 320-328, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32774237

RESUMEN

Selective portal vein embolization (PVE) before extended liver surgery is an accepted method to stimulate growth of the future liver remnant. Portal vein thrombosis (PVT) of the main stem and the non-targeted branches to the future liver remnant is a rare but major complication of PVE, requiring immediate revascularization. Without revascularization, curative liver surgery is not possible, resulting in a potentially life-threatening situation. We here present a new surgical technique to revascularize the portal vein after PVT by combining a surgical thrombectomy with catheter-based thrombolysis via the surgically reopened umbilical vein. This technique was successfully applied in a patient who developed thrombosis of the portal vein main stem, as well as the left portal vein and its branches to the left lateral segments after selective right-sided PVE in preparation for an extended right hemihepatectomy. The advantage of this technique is the avoidance of an exploration of hepatoduodenal ligament and a venotomy of the portal vein. The minimal surgical trauma facilitates additional intravascular thrombolytic therapy as well as the future right extended hemihepatectomy. We recommend this technique in patients with extensive PVT in which percutaneous less invasive therapies have been proven unsuccessful.

14.
Pediatr Transplant ; 23(3): e13362, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30801955

RESUMEN

One of the main limiting factors in pediatric liver transplantation is donor availability. For adults, DCD liver grafts are increasingly used to expand the donor pool. To improve outcome after DCD liver transplantation, ex situ machine perfusion is used as an alternative organ preservation strategy, with the supplemental value of providing oxygen to the graft during preservation. We here report the first successful transplantation of a pediatric DCD liver graft after hypothermic oxygenated machine perfusion. The full-size liver graft was derived from a 13-year-old, female DCD donor and was end-ischemic pretreated with dual hypothermic oxygenated machine perfusion. Arterial and portal pressures were set at 18 and 4 mm Hg, slightly lower than protocolized settings for adult livers. During 2 hours of machine perfusion, portal and arterial flows increased from 100 to 210 mL/min and 30 to 63 mL/min, respectively. The pretreated liver graft was implanted in a 16-year-old girl with progressive familial intrahepatic cholestasis type 2. Postoperative AST, ALT, and prothrombin time normalized within a week. The recipient quickly recovered and was discharged from the hospital after 18 days. One year after transplantation, she is in excellent condition with a completely normal liver function and histology. This case is the first report of successful transplantation of a pediatric DCD liver graft after hypothermic oxygenated machine perfusion and illustrates the potential role of ex situ machine perfusion in expanding the donor pool and improving outcome after pediatric liver transplantation.


Asunto(s)
Trasplante de Hígado/instrumentación , Hígado/cirugía , Preservación de Órganos/instrumentación , Preservación de Órganos/métodos , Perfusión , Adolescente , Alanina Transaminasa/metabolismo , Aspartato Aminotransferasas/metabolismo , Colestasis Intrahepática/cirugía , Femenino , Supervivencia de Injerto , Humanos , Trasplante de Hígado/métodos , Oxígeno/metabolismo , Pediatría , Periodo Posoperatorio , Tiempo de Protrombina , Obtención de Tejidos y Órganos/métodos , Resultado del Tratamiento
15.
Hepatology ; 69(4): 1719-1734, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30506902

RESUMEN

Peribiliary glands (PBG) are a source of stem/progenitor cells organized in a cellular network encircling large bile ducts. Severe cholangiopathy with loss of luminal biliary epithelium has been proposed to activate PBG, resulting in cell proliferation and differentiation to restore biliary epithelial integrity. However, formal evidence for this concept in human livers is lacking. We therefore developed an ex vivo model using precision-cut slices of extrahepatic human bile ducts obtained from discarded donor livers, providing an intact anatomical organization of cell structures, to study spatiotemporal differentiation and migration of PBG cells after severe biliary injury. Postischemic bile duct slices were incubated in oxygenated culture medium for up to a week. At baseline, severe tissue injury was evident with loss of luminal epithelial lining and mural stroma necrosis. In contrast, PBG remained relatively well preserved and different reactions of PBG were noted, including PBG dilatation, cell proliferation, and maturation. Proliferation of PBG cells increased after 24 hours of oxygenated incubation, reaching a peak after 72 hours. Proliferation of PBG cells was paralleled by a reduction in PBG apoptosis and differentiation from a primitive and pluripotent (homeobox protein Nanog+/ sex-determining region Y-box 9+) to a mature (cystic fibrosis transmembrane conductance regulator+/secretin receptor+) and activated phenotype (increased expression of hypoxia-inducible factor 1 alpha, glucose transporter 1, and vascular endothelial growth factor A). Migration of proliferating PBG cells in our ex vivo model was unorganized, but resulted in generation of epithelial monolayers at stromal surfaces. Conclusion: Human PBG contain biliary progenitor cells and are able to respond to bile duct epithelial loss with proliferation, differentiation, and maturation to restore epithelial integrity. The ex vivo spatiotemporal behavior of human PBG cells provides evidence for a pivotal role of PBG in biliary regeneration after severe injury.


Asunto(s)
Conductos Biliares/fisiología , Regeneración , Proliferación Celular , Epitelio/fisiología , Humanos , Técnicas In Vitro , Daño por Reperfusión
16.
Biochim Biophys Acta Mol Basis Dis ; 1864(4 Pt B): 1524-1531, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28778591

RESUMEN

The larger ducts of the biliary tree contain numerous tubulo-alveolar adnexal glands that are lined with biliary epithelial cells and connected to the bile duct lumen via small glandular canals. Although these peribiliary glands (PBG) were already described in the 19th century, their exact function and role in the pathophysiology and development of cholangiopathies have not become evident until recently. While secretion of serous and mucinous components into the bile was long considered as the main function of PBG, recent studies have identified PBG as an important source for biliary epithelial cell proliferation and renewal. Activation, dilatation, and proliferation of PBG (or the lack thereof) have been associated with various cholangiopathies. Moreover, PBG have been identified as niches of multipotent stem/progenitor cells with endodermal lineage traits. This has sparked research interest in the role of PBG in the pathogenesis of various cholangiopathies as well as bile duct malignancies. Deeper understanding of the regenerative capacity of the PBG may contribute to the development of novel regenerative therapeutics for previously untreatable hepatobiliary diseases. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.


Asunto(s)
Enfermedades de los Conductos Biliares/etiología , Conductos Biliares/fisiología , Células Epiteliales/fisiología , Células Madre Multipotentes/fisiología , Regeneración/fisiología , Enfermedades de los Conductos Biliares/patología , Conductos Biliares/citología , Conductos Biliares/ultraestructura , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Cilios/fisiología , Células Epiteliales/citología , Células Epiteliales/ultraestructura , Humanos , Células del Estroma/fisiología
17.
Clin Transpl ; 31: 101-111, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-28514572

RESUMEN

The liver transplantation program of the University Medical Center Groningen in the Netherlands was started in 1979, making it one of the first programs worldwide. During the past 36 years, a total of 1478 liver transplantations have been performed, 459 of which were in children. One of the first patients transplanted in 1979 is still alive and is one of the longest surviving patients after liver transplantation worldwide. During the last decade, an increasing number of donation after circulatory death (DCD) donor livers have been accepted for transplantation. Over 30% of the livers transplanted in Groningen come from DCD donors. These livers have an increased risk of developing biliary complications, such as non-anastomotic biliary strictures (NAS). One of the main research topics in Groningen has been the pathogenesis and prevention of NAS. In an attempt to reduce the incidence of NAS after liver transplantation, machine perfusion technology has been developed as an alternative to the traditional method of static cold storage. Researchers of the Groningen liver transplant team were the first in the world to report a method of ex situ normothermic machine perfusion of human donor livers. The efficacy and safety of various types of machine perfusion are currently studied in both animal models and clinical trials. A second line of research in Groningen focuses on alterations in the blood coagulation system in patients with liver disease and undergoing liver transplantation. Groningen researchers were the first to describe a 'rebalanced state' of the coagulation system in patients with liver disease, making them prone to both bleeding and thrombo-embolic complications. Clinicians and researchers at the Groningen liver transplant program will continue to collaborate with a shared focus and the aim to provide innovation and the highest level of care to patients with endstage liver disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...