Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Med Genet ; 60(10): 999-1005, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37185208

RESUMEN

PURPOSE: ARF1 was previously implicated in periventricular nodular heterotopia (PVNH) in only five individuals and systematic clinical characterisation was not available. The aim of this study is to provide a comprehensive description of the phenotypic and genotypic spectrum of ARF1-related neurodevelopmental disorder. METHODS: We collected detailed phenotypes of an international cohort of individuals (n=17) with ARF1 variants assembled through the GeneMatcher platform. Missense variants were structurally modelled, and the impact of several were functionally validated. RESULTS: De novo variants (10 missense, 1 frameshift, 1 splice altering resulting in 9 residues insertion) in ARF1 were identified among 17 unrelated individuals. Detailed phenotypes included intellectual disability (ID), microcephaly, seizures and PVNH. No specific facial characteristics were consistent across all cases, however microretrognathia was common. Various hearing and visual defects were recurrent, and interestingly, some inflammatory features were reported. MRI of the brain frequently showed abnormalities consistent with a neuronal migration disorder. CONCLUSION: We confirm the role of ARF1 in an autosomal dominant syndrome with a phenotypic spectrum including severe ID, microcephaly, seizures and PVNH due to impaired neuronal migration.


Asunto(s)
Discapacidad Intelectual , Microcefalia , Heterotopia Nodular Periventricular , Humanos , Encéfalo/diagnóstico por imagen , Genotipo , Discapacidad Intelectual/genética , Fenotipo , Convulsiones/genética
2.
J Med Genet ; 59(11): 1058-1068, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35232796

RESUMEN

BACKGROUND: A neurodevelopmental syndrome was recently reported in four patients with SOX4 heterozygous missense variants in the high-mobility-group (HMG) DNA-binding domain. The present study aimed to consolidate clinical and genetic knowledge of this syndrome. METHODS: We newly identified 17 patients with SOX4 variants, predicted variant pathogenicity using in silico tests and in vitro functional assays and analysed the patients' phenotypes. RESULTS: All variants were novel, distinct and heterozygous. Seven HMG-domain missense and five stop-gain variants were classified as pathogenic or likely pathogenic variant (L/PV) as they precluded SOX4 transcriptional activity in vitro. Five HMG-domain and non-HMG-domain missense variants were classified as of uncertain significance (VUS) due to negative results from functional tests. When known, inheritance was de novo or from a mosaic unaffected or non-mosaic affected parent for patients with L/PV, and from a non-mosaic asymptomatic or affected parent for patients with VUS. All patients had neurodevelopmental, neurological and dysmorphic features, and at least one cardiovascular, ophthalmological, musculoskeletal or other somatic anomaly. Patients with L/PV were overall more affected than patients with VUS. They resembled patients with other neurodevelopmental diseases, including the SOX11-related and Coffin-Siris (CSS) syndromes, but lacked the most specific features of CSS. CONCLUSION: These findings consolidate evidence of a fairly non-specific neurodevelopmental syndrome due to SOX4 haploinsufficiency in neurogenesis and multiple other developmental processes.


Asunto(s)
Deformidades Congénitas de la Mano , Discapacidad Intelectual , Micrognatismo , Trastornos del Neurodesarrollo , Humanos , Micrognatismo/genética , Deformidades Congénitas de la Mano/genética , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Síndrome , Fenotipo , ADN , Factores de Transcripción SOXC/genética
3.
Genet Med ; 23(5): 881-887, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33473207

RESUMEN

PURPOSE: Neurodevelopmental disorders (NDDs) encompass a spectrum of genetically heterogeneous disorders with features that commonly include developmental delay, intellectual disability, and autism spectrum disorders. We sought to delineate the molecular and phenotypic spectrum of a novel neurodevelopmental disorder caused by variants in the GNAI1 gene. METHODS: Through large cohort trio-based exome sequencing and international data-sharing, we identified 24 unrelated individuals with NDD phenotypes and a variant in GNAI1, which encodes the inhibitory Gαi1 subunit of heterotrimeric G-proteins. We collected detailed genotype and phenotype information for each affected individual. RESULTS: We identified 16 unique variants in GNAI1 in 24 affected individuals; 23 occurred de novo and 1 was inherited from a mosaic parent. Most affected individuals have a severe neurodevelopmental disorder. Core features include global developmental delay, intellectual disability, hypotonia, and epilepsy. CONCLUSION: This collaboration establishes GNAI1 variants as a cause of NDDs. GNAI1-related NDD is most often characterized by severe to profound delays, hypotonia, epilepsy that ranges from self-limiting to intractable, behavior problems, and variable mild dysmorphic features.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Niño , Discapacidades del Desarrollo/genética , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Hipotonía Muscular/diagnóstico , Hipotonía Muscular/genética , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Convulsiones/genética , Secuenciación del Exoma
4.
Mol Genet Genomic Med ; 8(4): e1103, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32032478

RESUMEN

BACKGROUND: SCN1A is one of the most important epilepsy-related genes, with pathogenic variants leading to a range of phenotypes with varying disease severity. Different modifying factors have been hypothesized to influence SCN1A-related phenotypes. We investigate the presence of rare and more common variants in epilepsy-related genes as potential modifiers of SCN1A-related disease severity. METHODS: 87 patients with SCN1A-related epilepsy were investigated. Whole-exome sequencing was performed by the Beijing Genomics Institute (BGI). Functional variants in 422 genes associated with epilepsy and/or neuronal excitability were investigated. Differences in proportions of variants between the epilepsy genes and four control gene sets were calculated, and compared to the proportions of variants in the same genes in the ExAC database. RESULTS: Statistically significant excesses of variants in epilepsy genes were observed in the complete cohort and in the combined group of mildly and severely affected patients, particularly for variants with minor allele frequencies of <0.05. Patients with extreme phenotypes showed much greater excesses of epilepsy gene variants than patients with intermediate phenotypes. CONCLUSION: Our results indicate that relatively common variants in epilepsy genes, which would not necessarily be classified as pathogenic, may play a large role in modulating SCN1A phenotypes. They may modify the phenotypes of both severely and mildly affected patients. Our results may be a first step toward meaningful testing of modifier gene variants in regular diagnostics for individual patients, to provide a better estimation of disease severity for newly diagnosed patients.


Asunto(s)
Síndromes Epilépticos/genética , Genes Modificadores , Canal de Sodio Activado por Voltaje NAV1.1/genética , Adolescente , Adulto , Anciano , Niño , Preescolar , Síndromes Epilépticos/patología , Exoma , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fenotipo
5.
Mol Genet Genomic Med ; 7(7): e00727, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31144463

RESUMEN

BACKGROUND: Pathogenic variants in SCN1A cause variable epilepsy disorders with different disease severities. We here investigate whether common variation in the promoter region of the unaffected SCN1A allele could reduce normal expression, leading to a decreased residual function of Nav1.1, and therefore to more severe clinical outcomes in patients affected by pathogenic SCN1A variants. METHODS: Five different SCN1A promoter-haplotypes were functionally assessed in SH-SY5Y cells using Firefly and Renilla luciferase assays. The SCN1A promoter region was analyzed in a cohort of 143 participants with SCN1A pathogenic variants. Differences in clinical features and outcomes between participants with and without common variants in the SCN1A promoter-region of their unaffected allele were investigated. RESULTS: All non-wildtype haplotypes showed a significant reduction in luciferase expression, compared to the wildtype promoter-region (65%-80%, p = 0.039-0.0023). No statistically significant differences in clinical outcomes were observed between patients with and without common promoter variants. However, patients with a wildtype promoter-haplotype on their unaffected SCN1A allele showed a nonsignificant trend for milder phenotypes. CONCLUSION: The nonsignificant observed trends in our study warrant replication studies in larger cohorts to explore the potential modifying role of these common SCN1A promoter-haplotypes.


Asunto(s)
Epilepsia/patología , Canal de Sodio Activado por Voltaje NAV1.1/genética , Regiones no Traducidas 5' , Adolescente , Adulto , Alelos , Línea Celular Tumoral , Niño , Preescolar , Epilepsia/genética , Genes Reporteros , Estudio de Asociación del Genoma Completo , Haplotipos , Humanos , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Índice de Severidad de la Enfermedad , Adulto Joven
6.
Epilepsy Behav ; 90: 252-259, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30527252

RESUMEN

PURPOSE: Differentiating between Dravet syndrome and non-Dravet SCN1A-related phenotypes is important for prognosis regarding epilepsy severity, cognitive development, and comorbidities. When a child is diagnosed with genetic epilepsy with febrile seizures plus (GEFS+) or febrile seizures (FS), accurate prognostic information is essential as well, but detailed information on seizure course, seizure freedom, medication use, and comorbidities is lacking for this milder patient group. In this cross-sectional study, we explore disease characteristics in milder SCN1A-related phenotypes and the nature, occurrence, and relationships of SCN1A-related comorbidities in both patients with Dravet and non-Dravet syndromes. METHODS: A cohort of 164 Dutch participants with SCN1A-related seizures was evaluated, consisting of 116 patients with Dravet syndrome and 48 patients with either GEFS+, febrile seizures plus (FS+), or FS. Clinical data were collected from medical records, semi-structured telephone interviews, and three questionnaires: the Functional Mobility Scale (FMS), the Pediatric Quality of Life Inventory (PedsQL) Measurement Model, and the Child or Adult Behavior Checklists (CBCL/ABCL). RESULTS: Walking disabilities and severe behavioral problems affect 71% and 43% of patients with Dravet syndrome respectively and are almost never present in patients with non-Dravet syndromes. These comorbidities are strongly correlated to lower quality-of-life (QoL) scores. Less severe comorbidities occur in patients with non-Dravet syndromes: learning problems and psychological/behavioral problems are reported for 27% and 38% respectively. The average QoL score of the non-Dravet group was comparable with that of the general population. The majority of patients with non-Dravet syndromes becomes seizure-free after 10 years of age (85%). CONCLUSIONS: Severe behavioral problems and walking disabilities are common in patients with Dravet syndrome and should receive specific attention during clinical management. Although the epilepsy course of patients with non-Dravet syndromes is much more favorable, milder comorbidities frequently occur in this group as well. Our results may be of great value for clinical care and informing newly diagnosed patients and their parents about prognosis.


Asunto(s)
Epilepsias Mioclónicas/epidemiología , Epilepsias Mioclónicas/genética , Epilepsia/epidemiología , Epilepsia/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Adolescente , Adulto , Anciano , Niño , Preescolar , Estudios de Cohortes , Comorbilidad , Estudios Transversales , Epilepsias Mioclónicas/diagnóstico , Epilepsia/diagnóstico , Síndromes Epilépticos/diagnóstico , Síndromes Epilépticos/epidemiología , Síndromes Epilépticos/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Calidad de Vida , Estudios Retrospectivos , Convulsiones Febriles/diagnóstico , Convulsiones Febriles/epidemiología , Convulsiones Febriles/genética , Espasmos Infantiles/diagnóstico , Espasmos Infantiles/epidemiología , Espasmos Infantiles/genética , Encuestas y Cuestionarios , Resultado del Tratamiento , Adulto Joven
7.
J Med Genet ; 56(2): 75-80, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30368457

RESUMEN

BACKGROUND: Dravet syndrome is a severe genetic encephalopathy, caused by pathogenic variants in SCN1A. Low-grade parental mosaicism occurs in a substantial proportion of families (7%-13%) and has important implications for recurrence risks. However, parental mosaicism can remain undetected by methods regularly used in diagnostics. In this study, we use single-molecule molecular inversion probes (smMIP), a technique with high sensitivity for detecting low-grade mosaic variants and high cost-effectiveness, to investigate the incidence of parental mosaicism of SCN1A variants in a cohort of 90 families and assess the feasibility of this technique. METHODS: Deep sequencing of SCN1A was performed using smMIPs. False positive rates for each of the proband's pathogenic variants were determined in 145 unrelated samples. If parents showed corresponding variant alleles at a significantly higher rate than the established noise ratio, mosaicism was confirmed by droplet digital PCR (ddPCR). RESULTS: Sequence coverage of at least 100× at the location of the corresponding pathogenic variant was reached for 80 parent couples. The variant ratio was significantly higher than the established noise ratio in eight parent couples, of which four (5%) were regarded as true mosaics, based on ddPCR results. The false positive rate of smMIP analysis without ddPCR was therefore 50%. Three of these variants had previously been considered de novo in the proband by Sanger sequencing. CONCLUSION: smMIP technology combined withnext generation sequencing (NGS) performs better than Sanger sequencing in the detection of parental mosaicism. Because parental mosaicism has important implications for genetic counselling and recurrence risks, we stress the importance of implementing high-sensitivity NGS-based assays in standard diagnostics.


Asunto(s)
Epilepsia/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mosaicismo , Canal de Sodio Activado por Voltaje NAV1.1/genética , Epilepsias Mioclónicas/genética , Femenino , Humanos , Masculino , Sondas Moleculares , Linaje , Reacción en Cadena de la Polimerasa/métodos
8.
Epilepsia ; 59(6): 1154-1165, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29750338

RESUMEN

OBJECTIVE: Pathogenic variants in SCN1A can give rise to extremely variable disease severities that may be indistinguishable at their first presentation. We aim to find clinical features that can help predict the evolution of seizures into Dravet syndrome and clinical features that predict cognitive outcome in Dravet syndrome. We specifically investigate the role of contraindicated medication (CIM) as a possible modifier of cognitive decline. METHODS: A cohort of 164 Dutch participants with SCN1A-related seizures was evaluated. Clinical data were collected from medical records and semistructured telephone interviews. Cognitive function was classified by a child neurologist, neuropsychologist, and clinical geneticist. Several clinical variables, including duration of CIM use in the first 5 years of disease, were evaluated in univariate and multivariate analyses. RESULTS: A longer duration of CIM use in the first 5 years after seizure onset was significantly associated with a worse cognitive outcome at time of inclusion, and with lower interpolated intelligence quotient/developmental quotient scores after the first 5 years of disease in Dravet syndrome patients. CIM use remained a significant predictor for cognitive outcome in a multivariate regression model, as did age at the first observation of developmental delay and age at first afebrile seizure. Age at first afebrile seizure was the most accurate predictor for evolution of seizures into Dravet syndrome for the complete cohort. SIGNIFICANCE: Our data suggest that a longer CIM use in the first 5 years of disease can have negative effects on cognitive outcome in Dravet syndrome. An early diagnosis is essential to avoid these drugs. Furthermore, we identified age at first afebrile seizure as an important predictor for evolution of seizures into Dravet syndrome and for the severity of Dravet syndrome, which can be used to counsel parents of young patients with SCN1A-related seizures.


Asunto(s)
Anticonvulsivantes/efectos adversos , Trastornos del Conocimiento/etiología , Epilepsias Mioclónicas , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Adolescente , Adulto , Factores de Edad , Edad de Inicio , Anciano , Niño , Preescolar , Estudios de Cohortes , Progresión de la Enfermedad , Epilepsias Mioclónicas/complicaciones , Epilepsias Mioclónicas/tratamiento farmacológico , Epilepsias Mioclónicas/genética , Femenino , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Valor Predictivo de las Pruebas , Convulsiones/etiología , Adulto Joven
9.
Epilepsia ; 59(3): 690-703, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29460957

RESUMEN

OBJECTIVE: Phenotypes caused by de novo SCN1A pathogenic variants are very variable, ranging from severely affected patients with Dravet syndrome to much milder genetic epilepsy febrile seizures plus cases. The most important determinant of disease severity is the type of variant, with variants that cause a complete loss of function of the SCN1A protein (α-subunit of the neuronal sodium channel Nav1.1) being detected almost exclusively in Dravet syndrome patients. However, even within Dravet syndrome disease severity ranges greatly, and consequently other disease modifiers must exist. A better prediction of disease severity is very much needed in daily practice to improve counseling, stressing the importance of identifying modifying factors in this patient group. We evaluated 128 participants with de novo, pathogenic SCN1A variants to investigate whether mosaicism, caused by postzygotic mutation, is a major modifier in SCN1A-related epilepsy. METHODS: Mosaicism was investigated by reanalysis of the pathogenic SCN1A variants using single molecule molecular inversion probes and next generation sequencing with high coverage. Allelic ratios of pathogenic variants were used to determine whether mosaicism was likely. Selected mosaic variants were confirmed by droplet digital polymerase chain reaction and sequencing of different tissues. Developmental outcome was classified based on available data on intelligence quotient and school functioning/education. RESULTS: Mosaicism was present for 7.5% of de novo pathogenic SCN1A variants in symptomatic patients. Mosaic participants were less severely affected than nonmosaic participants if only participants with truncating variants are considered (distribution of developmental outcome scores, Mann-Whitney U, P = .023). SIGNIFICANCE: Postzygotic mutation is a common phenomenon in SCN1A-related epilepsies. Participants with mosaicism have on average milder phenotypes, suggesting that mosaicism can be a major modifier of SCN1A-related diseases. Detection of mosaicism has important implications for genetic counseling and can be achieved by deep sequencing of unique reads.


Asunto(s)
Epilepsia/diagnóstico , Epilepsia/genética , Variación Genética/genética , Mosaicismo , Canal de Sodio Activado por Voltaje NAV1.1/genética , Fenotipo , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Epilepsias Mioclónicas/diagnóstico , Epilepsias Mioclónicas/genética , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Adulto Joven
10.
J Med Genet ; 53(12): 850-858, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27358180

RESUMEN

BACKGROUND: Mutations in the KIAA2022 gene have been reported in male patients with X-linked intellectual disability, and related female carriers were unaffected. Here, we report 14 female patients who carry a heterozygous de novo KIAA2022 mutation and share a phenotype characterised by intellectual disability and epilepsy. METHODS: Reported females were selected for genetic testing because of substantial developmental problems and/or epilepsy. X-inactivation and expression studies were performed when possible. RESULTS: All mutations were predicted to result in a frameshift or premature stop. 12 out of 14 patients had intractable epilepsy with myoclonic and/or absence seizures, and generalised in 11. Thirteen patients had mild to severe intellectual disability. This female phenotype partially overlaps with the reported male phenotype which consists of more severe intellectual disability, microcephaly, growth retardation, facial dysmorphisms and, less frequently, epilepsy. One female patient showed completely skewed X-inactivation, complete absence of RNA expression in blood and a phenotype similar to male patients. In the six other tested patients, X-inactivation was random, confirmed by a non-significant twofold to threefold decrease of RNA expression in blood, consistent with the expected mosaicism between cells expressing mutant or normal KIAA2022 alleles. CONCLUSIONS: Heterozygous loss of KIAA2022 expression is a cause of intellectual disability in females. Compared with its hemizygous male counterpart, the heterozygous female disease has less severe intellectual disability, but is more often associated with a severe and intractable myoclonic epilepsy.


Asunto(s)
Epilepsia Refractaria/metabolismo , Mutación del Sistema de Lectura , Discapacidad Intelectual/metabolismo , Mosaicismo , Proteínas del Tejido Nervioso/genética , Inactivación del Cromosoma X , Adolescente , Adulto , Niño , Preescolar , Cromosomas Humanos X , Codón sin Sentido , Epilepsia Refractaria/genética , Femenino , Genes Ligados a X , Heterocigoto , Humanos , Discapacidad Intelectual/genética , Persona de Mediana Edad , Síndrome
11.
Am J Med Genet A ; 170(9): 2431-5, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27338644

RESUMEN

Pseudohypoparathyroidism (PHP) is a genetic disorder with resistance to parathyroid hormone (PTH) as most important feature. Main subtypes of the disease are pseudohypoparathyroidism 1b (PHP1b) and pseudohypoparathyroidism 1a (PHP1a). PHP1b is characterized by PTH resistance of the renal cortex due to reduced activity of the stimulatory G protein α subunit (Gsα) of the PTH receptor. In addition to resistance to PTH, PHP1a patients also lack sensitivity for other hormones that signal their actions through G protein-coupled receptors and display physical features of Albright hereditary osteodystrophy (AHO), which is not classically seen in PHP1b patients. PHP1a is caused by heterozygous loss-of-function mutations in maternally inherited GNAS exons 1-13, which encode Gsα. PHP1b is often caused by deletion of the STX16 gene, which is thought to have an important role in controlling the methylation and thus imprinting at part of the GNAS locus. Here we present a patient with PHP1b caused by the previously described recurrent 3-kb STX16 deletion. The patient's first symptoms were macrosomia, early onset obesity, and macrocephaly. Since this is an atypical but previously described rare presentation of PHP1b, we reemphasize STX16 deletions and PHP1b as a rare cause for early onset obesity and macrosomia. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Macrosomía Fetal/genética , Eliminación de Gen , Megalencefalia/genética , Obesidad/genética , Seudohipoparatiroidismo/diagnóstico , Seudohipoparatiroidismo/genética , Sintaxina 16/genética , Análisis Mutacional de ADN , Exones , Facies , Femenino , Macrosomía Fetal/diagnóstico , Estudios de Asociación Genética , Gráficos de Crecimiento , Humanos , Recién Nacido , Megalencefalia/diagnóstico , Obesidad/diagnóstico , Linaje , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...