Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 10: 854, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31105662

RESUMEN

Acquisition and subsequent metabolism of different carbon and nitrogen sources have been shown to play an important role in virulence attributes of the fungal pathogen Aspergillus fumigatus, such as the secretion of host tissue-damaging proteases and fungal cell wall integrity. We examined the relationship between the metabolic processes of carbon catabolite repression (CCR), nitrogen catabolite repression (NCR) and virulence in a variety of A. fumigatus clinical isolates. A considerable amount of heterogeneity with respect to the degree of CCR and NCR was observed and a positive correlation between NCR and virulence in a neutropenic mouse model of pulmonary aspergillosis (PA) was found. Isolate Afs35 was selected for further analysis and compared to the reference strain A1163, with both strains presenting the same degree of virulence in a neutropenic mouse model of PA. Afs35 metabolome analysis in physiological-relevant carbon sources indicated an accumulation of intracellular sugars that also serve as cell wall polysaccharide precursors. Genome analysis showed an accumulation of missense substitutions in the regulator of protease secretion and in genes encoding enzymes required for cell wall sugar metabolism. Based on these results, the virulence of strains Afs35 and A1163 was assessed in a triamcinolone murine model of PA and found to be significantly different, confirming the known importance of using different mouse models to assess strain-specific pathogenicity. These results highlight the importance of nitrogen metabolism for virulence and provide a detailed example of the heterogeneity that exists between A. fumigatus isolates with consequences for virulence in a strain-specific and host-dependent manner.

2.
Sci Rep ; 7: 45073, 2017 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-28361917

RESUMEN

One of the drawbacks during second-generation biofuel production from plant lignocellulosic biomass is the accumulation of glucose, the preferred carbon source of microorganisms, which causes the repression of hydrolytic enzyme secretion by industrially relevant filamentous fungi. Glucose sensing, subsequent transport and cellular signalling pathways have been barely elucidated in these organisms. This study therefore characterized the transcriptional response of the filamentous fungus Aspergillus nidulans to the presence of high and low glucose concentrations under continuous chemostat cultivation with the aim to identify novel factors involved in glucose sensing and signalling. Several transcription factor- and transporter-encoding genes were identified as being differentially regulated, including the previously characterized glucose and xylose transporter HxtB. HxtB was confirmed to be a low affinity glucose transporter, localizing to the plasma membrane under low- and high-glucose conditions. Furthermore, HxtB was shown to be involved in conidiation-related processes and may play a role in downstream glucose signalling. A gene predicted to encode the protein kinase PskA was also identified as being important for glucose metabolism. This study identified several proteins with predicted roles in glucose metabolic processes and provides a foundation for further investigation into the response of biotechnologically important filamentous fungi to glucose.


Asunto(s)
Aspergillus nidulans/metabolismo , Metabolismo de los Hidratos de Carbono , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Glucosa/metabolismo , Transducción de Señal , Aspergillus nidulans/efectos de los fármacos , Aspergillus nidulans/genética , Metabolismo de los Hidratos de Carbono/genética , Biología Computacional/métodos , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Ontología de Genes , Glucosa/farmacología , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Fenotipo , Unión Proteica , Transporte de Proteínas , Transducción de Señal/efectos de los fármacos , Transcripción Genética , Proteínas ras/metabolismo
3.
Biotechnol Biofuels ; 9: 204, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27708711

RESUMEN

BACKGROUND: The conversion of lignocellulosic biomass to biofuels (second-generation biofuel production) is an environmentally friendlier alternative to petroleum-based energy sources. Enzymatic deconstruction of lignocellulose, catalyzed by filamentous fungi such as Aspergillus nidulans, releases a mixture of mono- and polysaccharides, including hexose (glucose) and pentose (xylose) sugars, cellodextrins (cellobiose), and xylooligosaccharides (xylobiose). These sugars can subsequently be fermented by yeast cells to ethanol. One of the major drawbacks in this process lies in the inability of yeast, such as Saccharomyces cerevisiae, to successfully internalize sugars other than glucose. The aim of this study was, therefore, to screen the genome of A. nidulans, which encodes a multitude of sugar transporters, for transporters able to internalize non-glucose sugars and characterize them when introduced into S. cerevisiae. RESULTS: This work identified two proteins in A. nidulans, CltA and CltB, with roles in cellobiose transport and cellulose signaling, respectively. CltA, when introduced into S. cerevisiae, conferred growth on low and high concentrations of cellobiose. Deletion of cltB resulted in reduced growth and extracellular cellulase activity in A. nidulans in the presence of cellobiose. CltB, when introduced into S. cerevisiae, was not able to confer growth on cellobiose, suggesting that this protein is a sensor rather than a transporter. However, we have shown that the introduction of additional functional copies of CltB increases the growth in the presence of low concentrations of cellobiose, strongly indicating CltB is able to transport cellobiose. Furthermore, a previously identified glucose transporter, HxtB, was also found to be a major xylose transporter in A. nidulans. In S. cerevisiae, HxtB conferred growth on xylose which was accompanied by ethanol production. CONCLUSIONS: This work identified a cellobiose transporter, a xylose transporter, and a putative cellulose transceptor in A. nidulans. This is the first time that a sensor role for a protein in A. nidulans has been proposed. Both transporters are also able to transport glucose, highlighting the preference of A. nidulans for this carbon source. This work provides a basis for future studies which aim at characterizing and/or genetically engineering Aspergillus spp. transporters, which, in addition to glucose, can also internalize other carbon sources, to improve transport and fermentation of non-glucose sugars in S. cerevisiae.

4.
Microb Cell Fact ; 15(1): 158, 2016 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-27634467

RESUMEN

BACKGROUND: Crude glycerol is the main byproduct of the biodiesel industry. Although it can have different applications, its purification is costly. Therefore, in this study a biotechnological route has been proposed for further utilization of crude glycerol in the fermentative production of lactic acid. This acid is largely utilized in food, pharmaceutical, textile, and chemical industries, making it the hydroxycarboxylic acid with the highest market potential worldwide. Currently, industrial production of lactic acid is done mainly using sugar as the substrate. Thus here, for the first time, Pichia pastoris has been engineered for heterologous L-lactic acid production using glycerol as a single carbon source. For that, the Bos taurus lactate dehydrogenase gene was introduced into P. pastoris. Moreover, a heterologous and a novel homologous lactate transporter have been evaluated for L-lactic acid production. RESULTS: Batch fermentation of the P. pastoris X-33 strain producing LDHb allowed for lactic acid production in this yeast. Although P. pastoris is known for its respiratory metabolism, batch fermentations were performed with different oxygenation levels, indicating that lower oxygen availability increased lactic acid production by 20 %, pushing the yeast towards a fermentative metabolism. Furthermore, a newly putative lactate transporter from P. pastoris named PAS has been identified by search similarity with the lactate transporter from Saccharomyces cerevisiae Jen1p. Both heterologous and homologous transporters, Jen1p and PAS, were evaluated in one strain already containing LDH activity. Fed-batch experiments of P. pastoris strains carrying the lactate transporter were performed with the batch phase at aerobic conditions followed by an aerobic oxygen-limited phase where production of lactic acid was favored. The results showed that the strain containing PAS presented the highest lactic acid titer, reaching a yield of approximately 0.7 g/g. CONCLUSIONS: We showed that P. pastoris has a great potential as a fermentative organism for producing L-lactic acid using glycerol as the carbon source at limited oxygenation conditions (below 0.05 % DO in the bioreactor). The best strain had both the LDHb and the homologous lactate transporter encoding genes expressed, and reached a titer 1.5 times higher than the strain with the S. cerevisiae transporter. Finally, it was also shown that increased lactic acid production was concomitant to reduction of acetic acid formation by half.


Asunto(s)
Glicerol/metabolismo , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Pichia/genética , Ácido Acético/metabolismo , Animales , Biocombustibles , Reactores Biológicos , Bovinos , Fermentación , L-Lactato Deshidrogenasa/genética , Ingeniería Metabólica , Transportadores de Ácidos Monocarboxílicos/aislamiento & purificación , Pichia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...