Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Molecules ; 27(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36364352

RESUMEN

Reducing waste, using byproducts, and natural food additives are important sustainability trends. In this context, the aim of this study was to produce and evaluate a natural food dye, extracted from pumpkin byproducts, powdered and protected by spray-chilling (SC) and a combination of spray-drying and spray-chilling techniques (SDC). The extract was obtained using ethanol as solvent; vegetable fat and gum Arabic were used as carriers. Formulations were prepared with the following core:carrier ratios: SC 20 (20:80), SC 30 (30:70), SC 40 (40:60), SDC 5 (5:95), SDC 10 (10:90), and SDC 15 (15:85). The physicochemical properties of the formed microparticles were characterised, and their storage stability was evaluated over 90 days. The microparticles exhibited colour variation and size increase over time. SDC particles exhibited the highest encapsulation efficiency (95.2-100.8%) and retention of carotenoids in the storage period (60.8-89.7%). Considering the carotenoid content and its stability, the optimal formulation for each process was selected for further analysis. All of the processes and formulations produced spherical particles that were heterogeneous in size. SDC particles exhibited the highest oxidative stability index and the highest carotenoid release in the intestinal phase (32.6%). The use of combined microencapsulation technologies should be considered promising to protect carotenoid compounds.


Asunto(s)
Cucurbita , Cucurbita/química , Polvos , Carotenoides/química , Composición de Medicamentos/métodos , Extractos Vegetales/química
2.
Foods ; 11(17)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36076743

RESUMEN

Guaraná byproducts are rich in carotenoids, featuring strong antioxidant capacity and health-promoting benefits. However, these compounds are highly susceptible to oxidation and isomerization, which limits their applications in foods. This research aimed to encapsulate the carotenoid-rich extract from reddish guaraná peels by spray drying (SD), chilling (SC), and their combination (SDC) using gum arabic and vegetable fat as carriers. The carotenoid-rich extract was analyzed as a control, and the formulations were prepared with the following core-carrier ratios: SD20 (20:80), SD25 (25:75), SD33 (33:67), SC20 (20:80), SC30 (30:70), SC40 (40:60), SDC10 (10:90), and SDC20 (20:80). The physicochemical properties of the formed microparticles were characterized, and their storage stability was evaluated over 90 days. Water activity of microparticles formed during the SD process increased during storage, whereas those formed by SC and SDC processes showed no changes in water activity. The formed microparticles exhibited color variation and size increase over time. Carotenoid degradation of the microparticles was described by zero-order kinetics for most treatments. Considering the higher carotenoid content and its stability, the optimum formulation for each process was selected to further analysis. Scanning electron micrographs revealed the spherical shape and absence of cracks on the microparticle surface, as well as size heterogeneity. SD increased the stability to oxidation of the carotenoid-rich extract by at least 52-fold, SC by threefold, and SDC by 545-fold. Analysis of the thermophysical properties suggested that the carrier and the process of encapsulation influence the powder's thermal resistance. Water sorption data of the SDC microparticles depended on the blend of the carrier agents used in the process. Carotenoid encapsulation via an innovative combination of spray drying and spray chilling processes offers technological benefits, which could be applied as a promising alternative to protect valuable bioactive compounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...