Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 6: 32781, 2016 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-27608533

RESUMEN

Excitation of magnetization dynamics by pure spin currents has been recently recognized as an enabling mechanism for spintronics and magnonics, which allows implementation of spin-torque devices based on low-damping insulating magnetic materials. Here we report the first spatially-resolved study of the dynamic modes excited by pure spin current in nanometer-thick microscopic insulating Yttrium Iron Garnet disks. We show that these modes exhibit nonlinear self-broadening preventing the formation of the self-localized magnetic bullet, which plays a crucial role in the stabilization of the single-mode magnetization oscillations in all-metallic systems. This peculiarity associated with the efficient nonlinear mode coupling in low-damping materials can be among the main factors governing the interaction of pure spin currents with the dynamic magnetization in high-quality magnetic insulators.

2.
Nat Commun ; 7: 10377, 2016 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-26815737

RESUMEN

In recent years, spin-orbit effects have been widely used to produce and detect spin currents in spintronic devices. The peculiar symmetry of the spin Hall effect allows creation of a spin accumulation at the interface between a metal with strong spin-orbit interaction and a magnetic insulator, which can lead to a net pure spin current flowing from the metal into the insulator. This spin current applies a torque on the magnetization, which can eventually be driven into steady motion. Tailoring this experiment on extended films has proven to be elusive, probably due to mode competition. This requires the reduction of both the thickness and lateral size to reach full damping compensation. Here we show clear evidence of coherent spin-orbit torque-induced auto-oscillation in micron-sized yttrium iron garnet discs of thickness 20 nm. Our results emphasize the key role of quasi-degenerate spin-wave modes, which increase the threshold current.

3.
Nat Nanotechnol ; 11(4): 360-4, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26727200

RESUMEN

It has been proposed that high-frequency detectors based on the so-called spin-torque diode effect in spin transfer oscillators could eventually replace conventional Schottky diodes due to their nanoscale size, frequency tunability and large output sensitivity. Although a promising candidate for information and communications technology applications, the output voltage generated from this effect has still to be improved and, more pertinently, reduces drastically with decreasing radiofrequency (RF) current. Here we present a scheme for a new type of spintronics-based high-frequency detector based on the expulsion of the vortex core in a magnetic tunnel junction (MTJ). The resonant expulsion of the core leads to a large and sharp change in resistance associated with the difference in magnetoresistance between the vortex ground state and the final C-state configuration. Interestingly, this reversible effect is independent of the incoming RF current amplitude, offering a fast real-time RF threshold detector.

4.
Phys Rev Lett ; 113(19): 197203, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25415921

RESUMEN

It is demonstrated that the threshold current for damping compensation can be reached in a 5 µm diameter YIG(20 nm)|Pt(7 nm) disk. The demonstration rests upon the measurement of the ferromagnetic resonance linewidth as a function of I(dc) using a magnetic resonance force microscope (MRFM). It is shown that the magnetic losses of spin-wave modes existing in the magnetic insulator can be reduced or enhanced by at least a factor of 5 depending on the polarity and intensity of an in-plane dc current I(dc) flowing through the adjacent normal metal with strong spin-orbit interaction. Complete compensation of the damping of the fundamental mode by spin-orbit torque is reached for a current density of ∼3×10(11) A·m(-2), in agreement with theoretical predictions. At this critical threshold the MRFM detects a small change of static magnetization, a behavior consistent with the onset of an auto-oscillation regime.

5.
Phys Rev Lett ; 112(25): 257201, 2014 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-25014825

RESUMEN

We investigate the microwave characteristics of a spin transfer nano-oscillator (STNO) based on coupled vortices as a function of the perpendicular magnetic field H(⊥). Interestingly, we find that our vortex-based oscillator is quasi-isochronous independently of H(⊥) and for a dc current ranging between 18 and 25 mA. It means that the severe nonlinear broadening usually observed in STNOs can be suppressed on a broad range of bias. Still, the generation linewidth displays strong variations on H(⊥) (from 40 kHz to 1 MHz), while the frequency tunability in current remains almost constant (7 MHz/mA). This demonstrates that isochronicity does not necessarily imply a loss of frequency tunability, which is here governed by the current induced Oersted field. It is not sufficient either to achieve the highest spectral purity in the full range of H(⊥). We show that the observed linewidth broadenings are due to the excited mode interacting with a lower energy overdamped mode, which occurs at the successive crossings between harmonics of these two modes. These findings open new possibilities for the design of STNOs and the optimization of their performance.

6.
Phys Rev Lett ; 111(21): 217204, 2013 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-24313523

RESUMEN

We report on the electrical detection of the dynamical part of the spin-pumping current emitted during ferromagnetic resonance using inverse spin Hall effect methods. The experiment is performed on a YIG|Pt bilayer. The choice of yttrium iron garnet (YIG), a magnetic insulator, ensures that no charge current flows between the two layers and only the pure spin current produced by the magnetization dynamics is transferred into the adjacent strong spin-orbit Pt layer via spin pumping. To avoid measuring the parasitic eddy currents induced at the frequency of the microwave source, a resonance at half the frequency is induced using parametric excitation in the parallel geometry. Triggering this nonlinear effect allows us to directly detect on a spectrum analyzer the microwave component of the inverse spin Hall effect voltage. Signals as large as 30 µV are measured for precession angles of a couple of degrees. This direct detection provides a novel efficient means to study magnetization dynamics on a very wide frequency range with great sensitivity.

7.
Phys Rev Lett ; 111(24): 247601, 2013 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-24483698

RESUMEN

The anharmonicity of the potential well confining a magnetic vortex core in a nanodot is measured dynamically with a magnetic resonance force microscope (MRFM). The stray field of the MRFM tip is used to displace the equilibrium core position away from the nanodot center. The anharmonicity is then inferred from the relative frequency shift induced on the eigenfrequency of the vortex core translational mode. An analytical framework is proposed to extract the anharmonic coefficient from this variational approach. Traces of these shifts are recorded while scanning the tip above an isolated nanodot, patterned out of a single crystal FeV film. We observe a +10% increase of the eigenfrequency when the equilibrium position of the vortex core is displaced to about one-third of its radius. This calibrates the tunability of the gyrotropic mode by external magnetic fields.

8.
Phys Rev Lett ; 109(24): 247602, 2012 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-23368378

RESUMEN

We perform a spectroscopic study of the collective spin-wave dynamics occurring in a pair of magnetic nanodisks coupled by the magnetodipolar interaction. We take advantage of the stray field gradient produced by the magnetic tip of a ferromagnetic resonance force microscope to continuously tune and detune the relative resonance frequencies between two adjacent nano-objects. This reveals the anticrossing and hybridization of the spin-wave modes in the pair. At the exact tuning, the measured frequency splitting between the binding and antibinding modes corresponds to the strength of the dynamical dipolar coupling Ω. This accurate ferromagnetic resonance force microscope determination of Ω is measured versus the separation between the nanodisks. It agrees quantitatively with calculations of the expected dynamical magnetodipolar interaction in our sample.

9.
Phys Rev Lett ; 102(17): 177602, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19518834

RESUMEN

Microwave spectroscopy of individual vortex-state magnetic nanodisks in a perpendicular bias magnetic field H is performed using a magnetic resonance force microscope. It reveals the splitting induced by H on the gyrotropic frequency of the vortex core rotation related to the existence of the two stable polarities of the core. This splitting enables spectroscopic detection of the core polarity. The bistability extends up to a large negative (antiparallel to the core) value of the bias magnetic field Hr, at which the core polarity is reversed. The difference between the frequencies of the two stable rotational modes corresponding to each core polarity is proportional to H and to the ratio of the disk thickness to its radius. Simple analytic theory in combination with micromagnetic simulations give a quantitative description of the observed bistable dynamics.

10.
Rev Sci Instrum ; 79(7): 074703, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18681725

RESUMEN

A sensor that integrates high-sensitivity micro-Hall effect magnetometry and high-frequency electron paramagnetic resonance spectroscopy capabilities on a single semiconductor chip is presented. The Hall-effect magnetometer (HEM) was fabricated from a two-dimensional electron gas GaAsAlGaAs heterostructure in the form of a cross, with a 50 x 50 microm2 sensing area. A high-frequency microstrip resonator is coupled with two small gaps to a transmission line with a 50 Omega impedance. Different resonator lengths are used to obtain quasi-TEM fundamental resonant modes in the frequency range 10-30 GHz. The resonator is positioned on top of the active area of the HEM, where the magnetic field of the fundamental mode is largest, thus optimizing the conversion of microwave power into magnetic field at the sample position. The two gaps coupling the resonator and transmission lines are engineered differently--the gap to the microwave source is designed to optimize the loaded quality factor of the resonator (Q

11.
J Appl Phys ; 103(7): 7B910-7B9103, 2008 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-19479002

RESUMEN

Dilute frozen solutions of the single molecule magnet Ni(4) (S=4) have been studied using 130 GHz electron paramagnetic resonance (EPR). Despite the random orientation of the molecules, well defined EPR absorption peaks are observed due to the strong variation of the splittings between the different spin states on magnetic field. Temperature dependent studies above 4 K and comparison with simulations enable identification of the spin transitions and determination of the Hamiltonian parameters. The latter are found to be close to those of Ni(4) single crystals. No echo was detected from Ni(4) in pulsed experiments, which sets an upper bound of about 50 ns on the spin coherence time.

12.
Phys Rev Lett ; 98(12): 127601, 2007 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-17501155

RESUMEN

Spin-wave spectra of perpendicularly magnetized disks consisting of a 100 nm permalloy layer sandwiched between two Cu layers of 30 nm are measured individually by a magnetic resonance force microscope. Using 3D micromagnetic simulations, it is demonstrated that, for submicron-size diameters, the lowest energy spin-wave mode of the saturated state is not spatially uniform, but rather is localized at the center of the Py/Cu interfaces in the region of the minimum demagnetizing field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...