Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Clin Epigenetics ; 13(1): 88, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33892786

RESUMEN

BACKGROUND: Cancer initiation and progression are driven by genetic and epigenetic changes. Although genome/exome sequencing has significantly contributed to the characterization of the genetic driver alterations, further investigation is required to systematically identify cancer driver genes regulated by promoter hypermethylation. RESULTS: Using genome-wide analysis of promoter methylation in 45 colorectal cancer cell lines, we found that higher overall methylation levels were associated with microsatellite instability (MSI), faster proliferation and absence of APC mutations. Because epigenetically silenced genes could represent important oncogenic drivers, we used mRNA expression profiling of colorectal cancer cell lines and primary tumors to identify a subset of 382 (3.9%) genes for which promoter methylation was negatively associated with gene expression. Remarkably, a significant enrichment in zinc finger proteins was observed, including the transcriptional repressor ZBTB18. Re-introduction of ZBTB18 in colon cancer cells significantly reduced proliferation in vitro and in a subcutaneous xenograft mouse model. Moreover, immunohistochemical analysis revealed that ZBTB18 is frequently lost or reduced in colorectal tumors, and reduced ZBTB18 expression was found to be associated with lymph node metastasis and shorter survival of patients with locally advanced colorectal cancer. CONCLUSIONS: We identified a set of 382 genes putatively silenced by promoter methylation in colorectal cancer that could significantly contribute to the oncogenic process. Moreover, as a proof of concept, we demonstrate that the epigenetically silenced gene ZBTB18 has tumor suppressor activity and is a novel prognostic marker for patients with locally advanced colorectal cancer.


Asunto(s)
Neoplasias Colorrectales/genética , Metilación de ADN/genética , Epigénesis Genética/genética , Genes Supresores de Tumor , Estudio de Asociación del Genoma Completo/métodos , Proteínas Represoras/genética , Línea Celular Tumoral , Humanos
2.
Br J Cancer ; 118(1): 106-116, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29206819

RESUMEN

BACKGROUND: Reduced RHOA signalling has been shown to increase the growth/metastatic potential of colorectal tumours. However, the mechanisms of inactivation of RHOA signalling in colon cancer have not been characterised. METHODS: A panel of colorectal cancer cell lines and large cohorts of primary tumours were used to investigate the expression and activity of RHOA, as well as the presence of RHOA mutations/deletions and promoter methylation affecting RHOA. Changes in RHOA expression were assessed by western blotting and qPCR after modulation of microRNAs, SMAD4 and c-MYC. RESULTS: We show here that RHOA point mutations and promoter hypermethylation do not significantly contribute to the large variability of RHOA expression observed among colorectal tumours. However, RHOA copy number loss was observed in 16% of colorectal tumours and this was associated with reduced RHOA expression. Moreover, we show that miR-200a/b/429 downregulates RHOA in colorectal cancer cells. In addition, we found that TGF-ß/SMAD4 upregulates the RHOA promoter. Conversely, RHOA expression is transcriptionally downregulated by canonical Wnt signalling through the Wnt target gene c-MYC that interferes with the binding of SP1 to the RHOA promoter in colon cancer cells. CONCLUSIONS: We demonstrate a complex pattern of inactivation of the tumour suppressor gene RHOA in colon cancer cells through genetic, transcriptional and post-transcriptional mechanisms.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Variaciones en el Número de Copia de ADN , Regulación hacia Abajo , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo , Línea Celular Tumoral , Estudios de Cohortes , Neoplasias Colorrectales/genética , Metilación de ADN , Femenino , Dosificación de Gen , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , MicroARNs/genética , Mutación Puntual , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal , Proteína Smad4/metabolismo , Activación Transcripcional , Vía de Señalización Wnt
3.
Sci Rep ; 7: 43702, 2017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28262839

RESUMEN

Although deregulation of EPHB signaling has been shown to be an important step in colorectal tumorigenesis, the role of EPHB6 in this process has not been investigated. We found here that manipulation of EPHB6 levels in colon cancer cell lines has no effect on their motility and growth on a solid substrate, soft agar or in a xenograft mouse model. We then used an EphB6 knockout mouse model to show that EphB6 inactivation does not efficiently initiate tumorigenesis in the intestinal tract. In addition, when intestinal tumors are initiated genetically or pharmacologically in EphB6+/+ and EphB6-/- mice, no differences were observed in animal survival, tumor multiplicity, size or histology, and proliferation of intestinal epithelial cells or tumor cells. However, reintroduction of EPHB6 into colon cancer cells significantly reduced the number of lung metastasis after tail-vein injection in immunodeficient mice, while EPHB6 knockdown in EPHB6-expressing cells increased their metastatic spread. Consistently, although EPHB6 protein expression in a series of 130 primary colorectal tumors was not associated with patient survival, EPHB6 expression was significantly lower in lymph node metastases compared to primary tumors. Our results indicate that the loss of EPHB6 contributes to the metastatic process of colorectal cancer.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Receptores de la Familia Eph/deficiencia , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Transformación Celular Neoplásica/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/mortalidad , Modelos Animales de Enfermedad , Expresión Génica , Humanos , Inmunohistoquímica , Ratones , Ratones Noqueados , Metástasis de la Neoplasia , Estadificación de Neoplasias , Pronóstico , Receptores de la Familia Eph/genética , Receptores de la Familia Eph/metabolismo
4.
Sci Rep ; 7: 41576, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28169277

RESUMEN

EPH signaling deregulation has been shown to be important for colorectal carcinogenesis and genome-wide sequencing efforts have identified EPHA3 as one of the most frequently mutated genes in these tumors. However, the role of EPHA3 in colorectal cancer has not been thoroughly investigated. We show here that ectopic expression of wild type EPHA3 in colon cancer cells did not affect their growth, motility/invasion or metastatic potential in vivo. Moreover, overexpression of mutant EPHA3 or deletion of the endogenous mutant EPHA3 in colon cancer cells did not affect their growth or motility. EPHA3 inactivation in mice did not initiate the tumorigenic process in their intestine, and had no effects on tumor size/multiplicity after tumor initiation either genetically or pharmacologically. In addition, immunohistochemical analysis of EPHA3 tumor levels did not reveal associations with survival or clinicopathological features of colorectal cancer patients. In conclusion, we show that EPHA3 does not play a major role in colorectal tumorigenesis. These results significantly contribute to our understanding of the role of EPH signaling during colorectal carcinogenesis, and highlighting the need for detailed functional studies to confirm the relevance of putative cancer driver genes identified in sequencing efforts of the cancer genome.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Transformación Celular Neoplásica , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Expresión Génica , Genotipo , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Ratones , Ratones Noqueados , Metástasis de la Neoplasia , Proteínas Tirosina Quinasas Receptoras/genética , Receptor EphA3 , Transducción de Señal
5.
J Cell Biochem ; 118(3): 442-445, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27632701

RESUMEN

Radiotherapy is widely used for advanced rectal tumors. However, refractory metastasis has become the major cause of therapy failure in rectal cancer patients. Understanding the molecular mechanism that controls the aggressive cellular response to this treatment is essential for developing new therapeutic applications and improving radiotherapy response in colorectal cancer patients. Using the progeny of cells that were submitted to irradiation, we have demonstrated that the PI3K/AKT, Wnt/ß-catenin signaling pathways as well as ERK1/2 downstream of EPHA4 receptor activation, play an important role in the regulation of events related with the EMT development, which may be associated with the therapeutic failure in rectal cancer after radiotherapy. Here, we further discuss about EphA4 receptor as a potential therapeutic target for the treatment of this cancer type. J. Cell. Biochem. 118: 442-445, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Transición Epitelial-Mesenquimal/efectos de la radiación , Sistema de Señalización de MAP Quinasas/efectos de la radiación , Receptor EphA4/metabolismo , Neoplasias del Recto/metabolismo , Neoplasias del Recto/radioterapia , Vía de Señalización Wnt/efectos de la radiación , Transición Epitelial-Mesenquimal/genética , Humanos , Sistema de Señalización de MAP Quinasas/genética , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor EphA4/genética , Neoplasias del Recto/genética , Neoplasias del Recto/patología , Vía de Señalización Wnt/genética
6.
Tumour Biol ; 37(9): 12411-12422, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27323967

RESUMEN

Radiotherapy is widely used for advanced rectal tumors. However, tumor recurrence after this treatment tends to be more aggressive and is associated with a poor prognosis. Uncovering the molecular mechanism that controls this recurrence is essential for developing new therapeutic applications. In the present study, we demonstrated that radiation increases the EphA4 activation level of the survivor progeny of colorectal cancer cells submitted to this treatment and that such activation promoted the internalization of a complex E-cadherin-EphA4, inducing cell-cell adhesion disruption. Moreover, EphA4 knockdown in the progeny of irradiated cells reduced the migratory and invasive potentials and metalloprotease activity induced by irradiation. Finally, we demonstrated that the cell migration and invasion potential were regulated by AKT and ERK1/2 signaling, with the ERK1/2 activity being dependent on EphA4. In summary, our study demonstrates that these signaling pathways could be responsible for the therapeutic failure, thereby promoting local invasion and metastasis in rectal cancer after radiotherapy. We also postulate that EphA4 is a potential therapeutic target for colorectal cancer treatment.


Asunto(s)
Neoplasias Colorrectales/radioterapia , Receptor EphA4/fisiología , Transducción de Señal/fisiología , Antígenos CD , Cadherinas/análisis , Neoplasias Colorrectales/patología , Doxazosina/farmacología , Quinasas MAP Reguladas por Señal Extracelular/fisiología , Células HT29 , Humanos , Invasividad Neoplásica , Proteínas Proto-Oncogénicas c-akt/fisiología
7.
J Cell Biochem ; 115(12): 2175-87, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25103643

RESUMEN

Radiotherapy remains a major approach to adjuvant therapy for patients with advanced colorectal cancer, however, the fractionation schedules frequently allow for the repopulation of surviving tumors cells, neoplastic progression, and subsequent metastasis. The aim of the present study was to analyze the transgenerational effects induced by radiation and evaluate whether it could increase the malignant features on the progeny derived from irradiated parental colorectal cancer cells, Caco-2, HT-29, and HCT-116. The progeny of these cells displayed a differential radioresistance as seen by clonogenic and caspase activation assay and had a direct correlation with survivin expression as observed by immunoblotting. Immunofluorescence showed that the most radioresistant progenies had an aberrant morphology, disturbance of the cell-cell adhesion contacts, disorganization of the actin cytoskeleton, and vimentin filaments. Only the progeny derived from intermediary radioresistant cells, HT-29, reduced the E-cadherin expression and overexpressed ß-catenin and vimentin with increased cell migration, invasion, and metalloprotease activation as seen by immunoblotting, wound healing, invasion, and metalloprotease activity assay. We also observed that this most aggressive progeny increased the Wnt/ß-catenin-dependent TCF/LEF activity and underwent an upregulation of mesenchymal markers and downregulation of E-cadherin, as determined by qRT-PCR. Our results showed that the intermediate radioresistant cells can generate more aggressive cellular progeny with the EMT-like phenotype. The Wnt/ß-catenin pathway may constitute an important target for new adjuvant treatment schedules with radiotherapy, with the goal of reducing the migratory and invasive potential of the remaining cells after treatment.


Asunto(s)
Movimiento Celular/efectos de la radiación , Transición Epitelial-Mesenquimal/efectos de la radiación , Vía de Señalización Wnt , Citoesqueleto de Actina/metabolismo , Antígenos CD , Apoptosis , Células CACO-2 , Cadherinas/metabolismo , Caspasas/metabolismo , Forma de la Célula , Neoplasias Colorrectales , Células HT29 , Humanos , Proteínas Inhibidoras de la Apoptosis/metabolismo , Invasividad Neoplásica , Tolerancia a Radiación , Survivin , Vimentina/metabolismo , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...